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1 INTRODUCTION

ABSTRACT

Physical processes regulating star formation in satellite galaxies represent an area of ongoing
research, but the projected nature of observed coordinates makes separating different popula-
tions of satellites (with different processes at work) difficult. The orbital history of a satellite
galaxy leads to its present-day phase space coordinates; we can also work backwards and use
these coordinates to statistically infer information about the orbital history. We use merger
trees from the MultiDark Run 1 N-body simulation to compile a catalogue of the orbits of
satellite haloes in cluster environments. We parametrize the orbital history by the time since
crossing within 2.5 ry;, of the cluster centre and use our catalogue to estimate the probability
density over a range of this parameter given a set of present-day projected (i.e. observable)
phase space coordinates. We show that different populations of satellite haloes, e.g. infalling,
backsplash and virialized, occupy distinct regions of phase space and semidistinct regions of
projected phase space. This will allow us to probabilistically determine the time since infall of
a large sample of observed satellite galaxies, and ultimately to study the effect of orbital history
on star formation history (the topic of a future paper). We test the accuracy of our method
and find that we can reliably recover this time within +2.58 Gyr in 68 per cent of cases by
using all available phase space coordinate information, compared to +2.64 Gyr using only
position coordinates and +3.10 Gyr guessing ‘blindly’, i.e. using no coordinate information,
but with knowledge of the overall distribution of infall times. In some regions of phase space,
the accuracy of the infall time estimate improves to +1.85 Gyr. Although we focus on time
since infall, our method is easily generalizable to other orbital parameters (e.g. pericentric
distance and time).
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Smith et al. 2010b), tidal stripping (Mayer et al. 2006), harassment
(Moore et al. 1996; Smith, Davies & Nelson 2010a), strangula-

We know that galaxies in clusters are typically more ‘red and
dead’ than their counterparts in the field (Balogh et al. 2004; Hogg
et al. 2004), as well as dominantly elliptical (rather than spiral,
see Dressler 1980). This is thought to be due to a mechanism or
combination of mechanisms that halt the collapse of cold gas into
stars in a satellite galaxy as it orbits within a deep potential well
— either by heating or removing the gas or by preventing the cool-
ing of additional gas and consuming the existing supply. Some
renowned mechanisms include ram pressure stripping (e.g. Gunn
& Gott 1972; Abadi, Moore & Bower 1999; Jachym et al. 2007,
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tion (Larson, Tinsley & Caldwell 1980; Balogh, Navarro & Morris
2000) and mergers (Toomre & Toomre 1972; Cox et al. 2006). In-
ternal quenching mechanisms have also been proposed — e.g. shock
heating (Birnboim & Dekel 2003; Dekel & Birnboim 2006), active
galactic nucleus heating (Croton et al. 2006; McNamara et al. 2006,
see also Gabor et al. 2010) — which, while unable to account for the
difference between field and cluster galaxies, may each contribute
to increasing the red fraction in both environments.

It has so far been found difficult to produce a semi-analytic model
for quenching that reproduces the observed star formation (SF) rate
distribution in clusters (Wetzel et al. 2012; but see Weinmann et al.
2010 for some recent improvements). However, all the environmen-
tal quenching mechanisms listed above have at least one common
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characteristic: each is sensitive to the path taken through the cluster.
Tidal stripping is strongest near the cluster centre. Ram pressure
stripping varies with the local density of hot cluster gas and the
relative velocity of the satellite, both of which vary radially in
the cluster. Mergers are more probable in the outskirts of clusters.
Harassment is most effective during high-speed encounters, which
occur near the cluster core. Strangulation is triggered by the re-
moval of the halo gas of the satellite, ostensibly via one of the
aforementioned mechanisms. An environmental quenching model
can therefore reasonably be expected to depend on the previous
positions and velocities, or more concisely the orbital history, of
satellite galaxies.

The orbital history of a galaxy is not directly observable; if we
hope to compare environmental quenching models to observational
data, we need some way to characterize the orbit of an observed
galaxy. We might parametrize the orbital history of a galaxy in any
of a number of ways — for instance by the time since infall into
the cluster potential, the distance of closest approach to the cluster
centre or the number of orbits completed since infall — then attempt
to find correlations between these parameters and observables using
N-body simulation data. The observables we consider available are
the distances between the satellite and the cluster centre projected
on to the plane of the sky and the component of the velocity of the
satellite relative to the cluster centre along the line of sight (LoS). In
some nearby clusters, it may also be possible to obtain distances to
the cluster centre and the satellite via direct distance measurements
(e.g. Tully—Fisher relation, surface brightness fluctuations, Type Ia
supernova luminosities, etc.), but in general these will be much
less precise than the other two coordinates — we will consider this
information inaccessible (for an interesting analysis similar to ours
but focusing on the satellites of the Milky Way for which distances
and sometimes proper motions are available; see Rocha, Peter &
Bullock 2012).

Several authors (Gao et al. 2004; Wang et al. 2011; De Lucia et al.
2012; Taranu et al. 2012) have shown that the present radial distance
from the cluster centre is negatively correlated to the time since infall
into the cluster and other orbital parameters. Gill, Knebe & Gibson
(2005) were amongst the first to compare the velocity distributions
of different satellite populations (see also Wang et al. 2005), and
more recently Mahajan, Mamon & Raychaudhury (2011) presented
a method for separating satellite populations based on, amongst
other parameters, their LoS velocities.

This paper presents our method for reconstructing the
parametrized orbital history of a satellite galaxy based on its present-
day observable phase space coordinates; we defer its applications
to future papers. Here, we focus on one parameter — the time since
infall on to a cluster-sized host — but stress that our method is eas-
ily adapted to other parameter choices. The time since the satellite
first passed pericentre on its orbit in the cluster and the distance
of closest approach to the cluster centre are two examples of other
parameter choices that will be of interest in future applications of
our method.

In Section 2, we describe the N-body simulation data and their
conversion into halo catalogues and merger trees. In Section 3,
we present the method used to convert the merger trees into our
catalogue of satellite orbits, and to a probability density function
(PDF) of times since infall given a pair of coordinates in phase
space. In Section 4, we discuss the importance of LoS velocity data
in discriminating between different populations of satellites. We
summarize in Section 5.

We assume the same cosmology used in the Bolshoi and
MultiDark Run 1 (MDRI1) simulations with 2, = 0.27, Q, =

0.73, Q, = 0.0469, n;, = 0.95, hy = 0.70, 0y = 0.82 (Prada et al.
2012).

2 SIMULATIONS

To obtain a large sample of satellite orbits, we use the output of the
MDRI1 dark matter (DM) only simulation with 1 Gpc h~! box side
length, 20483 particles, current cosmology (Wilkinson Microwave
Anisotropy Probe (WMAP) 5/WMAPT), 8.7 x 10° h~! Mg mass
resolution and 7 kpc force resolution. The simulation was run from
z = 65 to the present; the majority of snapshots are output at even in-
tervals in scalefactor a with some irregular intervals at small a. The
resolution in scalefactor is of 0.0304 before a ~ 0.7 (z ~ 0.43) and
doubles to 0.0152 afterwards (corresponding to a time resolution of
about 0.210 Gyr at z = 0). This is taken into account in our discus-
sion below. Full details of the simulation parameters are described
in Prada et al. (2012). The simulation snapshots were processed by
the rRocksTAR halo finder (Behroozi, Wechsler & Wu 2013a) and
the merger tree code presented in Behroozi et al. (2013b). To pro-
duce the data used in this paper, the merger tree code was slightly
modified so that a halo may contain satellite haloes at distances
of up to 2.5 times its virial radius (r;; = raep) from its centre; by
default the code finds satellites within only 1.0 virial radii. This
allows us to track satellites out to the largest apocentric distances
which Mamon et al. (2004, see also Balogh et al. 2000; Gill et al.
2005; Ludlow et al. 2009) show to be about ~2.5r,00.(~ 2.2r360p)
by using host—satellite linking as a proxy for cluster membership.

In the following discussion, we will denote full 6D cluster-centric
coordinates (r, v). The position and velocity centre of a halo is
determined by averaging the positions and velocities of the subset
of halo particles which minimizes the expected Poisson error in the
coordinates, i.e. the particles occupying the region of highest local
density (for more details on how the coordinates are determined
by the halo finder, we refer the interested reader to Behroozi et al.
2013a, section 3.5.1).

Projected coordinates will be denoted (R, V). Projection is done
along the arbitrarily chosen third (z-)axis of the simulation box
and includes a correction to the velocities to account for the
Hubble flow. With this correction, the simulated velocity differ-
ences can be directly compared to observation data, where veloc-
ity differences would presumably be measured using a redshift
difference. The projected distance between two points is Ry, =
\/ (r,x — r1,x)* + (r2,y — r1,4)* and the relative velocity of point 2
with respect to point 1 is Vi = [(va,;, — vy1.;) + H(ra., — 11,
Note that V > 0; this encodes our assumption that the distances to
the two points are not known precisely, so only the magnitude of
their relative velocity can be determined.

For ease of comparison between satellites of different hosts, all
spatial coordinates are normalized to the virial radius r; of the
host halo, which is defined using the formula of Bryan & Norman
(1998): the radius enclosing a region with an overdensity of 360
times the background density at z = 0. For readers more accustomed
to normalization by ryp., an approximate conversion at z = 0 is
e ~ 1.13. All velocity coordinates are normalized to the rms
vé‘lrocity dispersion o of the host halo, measured in 3D.

3 METHOD

First, the orbital history of a satellite and its host at z = 0 are
determined. Then the infall time of the satellite into that host halo
is defined as the earliest time at which the satellite’s progenitor
identifies the z = 0 host’s progenitor as its host. A host—satellite
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Figure 1. These two panels provide a measure of the importance of resolution effects in our analysis; see Sections 3 and 4.4 for discussion. Left-hand panel:
the mass function of all satellite haloes in our initial sample (dotted black line) and the mass function of satellite haloes that have experienced at least one
pericentric passage (solid black line), where in both cases the masses are measured at the time of infall on to their host. The coloured lines separate the satellites
that have experienced a pericentric passage into bins of pericentric distance, as labelled. The total number of satellites contributing to each mass function are
labelled N. We impose a mass cut as indicated by the thick vertical line (Mcy = 10" M), yielding a sample which is as complete as reasonably possible
above M. Right-hand panel: number density as a function of satellite radial position for various mass ratios i, where the mass of the satellite is measured at
the time of infall. The host haloes have masses >10'4 M¢. Satellites with low-mass ratios are underabundant towards the centre of the cluster environment.

pair may be identified as soon as the satellite is within 2.5 times
the virial radius of the host; though other criteria must still be
met, as outlined in Behroozi et al. (2013b), in practice these are
usually met immediately when the satellite crosses within 2.57;;.
Only the orbital history with respect to the final (z = 0) host is
considered, and in cases where a satellite has a hierarchy of hosts,
intermediate hosts are ignored and the satellite identifies the largest
as its host; in other words, this work ignores ‘group pre-processing’.
Hosts are selected to be ‘cluster-sized’, which we define as a halo
mass >10"* M. With the MDRI data set, this yields a catalogue
of ~570 000 satellite orbits belonging to ~24 500 different hosts.
To ensure a sample complete in satellite mass, and that we are
minimally sensitive to artificial disruption of satellite haloes, we im-
pose a mass cut at M, = 10119 M@, where the mass is measured
at the time of infall. Using the stellar-to-halo mass ratios outlined
in Behroozi, Wechsler & Conroy (2012), this corresponds to a cut
in stellar mass at ~10'%3 M. The left-hand panel of Fig. 1 shows
the mass function for all satellites, and for satellites that have ex-
perienced at least one pericentric passage in bins of proximity of
pericentric passage. Our mass cut is safely above the mass resolution
limit of the simulation. As in essentially all cosmological simula-
tions, MDR1 haloes experience artificial disruption in high-density
environments (Klypin et al. 1999; Kitzbichler & White 2008). This
is the reason for the underabundance of lower mass satellites that
have experienced a close approach to a cluster centre (blue curve in
Fig. 1, left-hand panel). From these mass functions, we estimate that
less than 20 per cent of haloes with masses above our mass cut and
pericentric distances in the range 0.0-0.25r,;; have been artificially
disrupted. Most of the artificially disrupted satellites are in the mass
range 10'9—10"%! M. We estimate that these missing satellites
account for less than 4 per cent of the total halo population above
our mass cut. The right-hand panel of Fig. 1 shows the number
density of satellite haloes as a function of radial position for bins
of satellite mass relative to the host halo. Observations constrain
the slope of this power law relation to be between —1.7 and —1.5,
regardless of mass ratio (Tinker et al. 2012). The slopes shown in

Fig 1 are somewhat steeper at about —1.9 for . = 107%°—10°. The
reason for this steeper slope is not precisely known, but the higher
resolution Bolshoi simulation exhibits the same slope of —1.9 so
we surmise that it is not due to a resolution effect. The key feature
that we wish to highlight is that the slope (and shape) of this rela-
tionship is mass ratio dependent in our data set, with satellites that
are smaller relative to their host being less abundant closer to the
centre of the host. The underabundances of satellites highlighted by
each panel of Fig. 1 are due to the same population of satellites;
those which have orbited to within <0.25r;; of their host and have
amass < 10! M. See Section 4.4 for a discussion of the impact
of these missing satellites on our results.

We impose one final cut, removing satellites that existed for
less than three simulation snapshots before falling into a cluster.
This prevents haloes near the mass resolution limit of the simula-
tion from appearing suddenly inside a cluster and being assigned
meaningless infall times. The remaining 242 790 satellites were
binned in 100 projected position bins in 0.0 < R/ry; < 2.5 and
100 projected velocity bins in 0.0 < V/o < 2.0. The set of infall
times in each bin was used to create a PDF of infall times for each
bin.

4 RESULTS

Before applying our PDFs to modelling environmental quenching
(which will be the focus of a future paper), we should have an
understanding of a few systematic effects inherent in the method
presented in Section 3. We will discuss the impact of projecting the
data in both the radial and velocity coordinates in Section 4.1. In
Section 4.2, we will present the PDFs and discuss some of their
features. In Section 4.3, we discuss the effects of both host and
satellite mass on the distribution of satellites in phase space. Finally,
in Section 4.4 we discuss the impact of resolution effects on our
results.
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Figure 2. Left-hand panel: abundance of satellites in bins of cluster infall time, defined as first inward crossing of 2.5 ry;, and radial distance from cluster
centre at t = 0. In the interval t = 0 to ¢ ~ 3.5 the ‘infalling’ population is visible, composed of satellites that have not yet experienced a pericentre passage.
From ¢ ~ 3.5 to 6 the ‘backsplash’ population is visible, composed of satellites that have passed pericentre once and are approaching apocentre (1 ~ 6). The
‘virialized” population (¢ > 6) are on a second or subsequent orbit. Grey horizontal lines illustrate the times of simulation snapshots. Right-hand panel: same as
left-hand panel, but using radial distance from cluster centre projected along one axis of the simulation box (simulating coordinates accessible in observations).
This widens the distribution of radii of satellites at a given infall time, but the same populations as in the left-hand panel are visible.

4.1 Projection effects

While a simulation provides accurate values for all six phase space
coordinates of an object, a typical astronomical observation can
only measure three. The right ascension and declination give two
spatial coordinates (the distance is unknown), while comparing the
spectra of two objects can give the difference in velocity between
them, but only for motion in a direction along the LoS. Since we
ultimately wish to infer properties of observed objects from their
coordinates, we must restrict our knowledge of simulated objects
to these same coordinates. This can be achieved by ignoring one
of the spatial coordinates of the simulation box — in our case, the
third — and considering only the velocity coordinate corresponding
to the ignored spatial coordinate. Additionally, we include a correc-
tion to the projected velocity to account for the Hubble flow. This
transformation applied to the spatial coordinates of a point x and
its velocity u relative to a reference point y and its velocity w can
be expressed as

r=(x—y)=(x;—y,X— Yy, X3 — ¥3)
= R = (x1 —y1, X2 — y2)
v=(u—w) = (U —wy, Uy — wy, U3 — w3)

=V = (|(u3s — w3) + H(xz — y3))).

We predict the effect of projection on the radial coordinate by
considering a random uniform distribution of points on a spher-
ical shell. For this distribution, the relationship between the ac-
tual () and projected (R) radial coordinates is characterized by

(By=2+,/2- 71‘—; ~0.79 +£0.22 (lo scatter). In our sample

of satellite galaxies, we find that (?) agrees with this prediction
to within 1 per cent, both in the mean and in the scatter. The
projected radial coordinate tracks the 3D radial coordinate more
closely and more consistently at larger projected radii; at R ~ ry,
() ~0.83 £0.17 while at R ~ 0.1ry;, (£) ~0.51 +£0.31. The
observed velocity coordinate does not have as straightforward a re-
lationship with the actual quantity of interest — the radial component

of the velocity difference between two points — but the informa-
tion about two components is lost instead of one, so we expect a
much larger typical difference between projected velocity and true
velocity. We also lose the sign of the one remaining component of
velocity since, without knowledge of the distances to the two points,
we cannot know whether the distance between them is increasing or
decreasing.

The left-hand panel of Fig. 2 shows the distribution of satellite
infall times' as a function of radial distance from the host centre
measured at z = 0 before projection. Satellites that have recent infall
times (near the top of the diagram) are necessarily concentrated near
the edge of our definition of the cluster at 2.5 ry;; they have not
had enough time to move anywhere else. A typical crossing time
for our sample of clusters is about 6-8 Gyr, so most satellites that
fell in 3 to 4 Gyr ago are near the centre of the host. Note that this
seemingly long crossing time is due to our definition of the edge of
the cluster at 2.5 ry;; the typical time to cross from 7, to pericentre
and back to ry;; is about 2 Gyr. The satellite also spends a significant
amount of time outside the virial radius after this initial crossing; it
takes a further ~1 Gyr for a typical satellite to reach apocentre after
making its first outbound crossing of ry;,.

There is a spread in the time taken to reach pericentre and the radii
of the pericentres caused by the variety of possible orbits and details
of the host potentials. The first apocentre after infall typically occurs
after about 6 Gyr; the population of objects between first pericentre
and apocentre is termed ‘backsplash’. Satellites with infall times
earlier than ~7 Gyr have less distinct features in their distribution
due to the increasing impact of variations in orbital history, but
the majority are confined within ~1r;; we call this population
‘virialized’. We note an overall decreasing number of satellites
with increasing time since infall. Some satellites with early infall
times are disrupted by tidal interactions and do not appear in our
merger trees. In other cases two infalling satellites may merge and

! The infall times produced by the method of Section 3 occur at discrete
times — those of the simulation snapshots. For the purposes of visualization
only, some scatter was added to the times.

€20z 1snbny Gz uo Jasn weylnq 1o Ausiaaiun Aq 862Z201L/L0€Z/S/ 1 Sy/81o1e/Seluw/wod dno-olwspese//:sdny woJj papeojumoq



Disentangling satellite galaxy populations 2311

2.0

: time since infall=0-12 Gyr

1.0

0.0

1-2 Gyr

-1.0¢}

0

radial velocity v, /o at z

5-6 Gyr
N=30205

0.0

1.0/

7-12 Gyr
N=21383

-2'(()).0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 2.5
radial position r/r;,

0.0

at z=0

Figure 3. The upper-left panel shows the phase space distribution of satellite haloes (no projection). The infalling population of haloes is particularly distinct,
forming the long dark bar with v < 0. The backsplash population forms the upper and lower edges of the rest of the main distribution, while the virialized
population fills in the centre. The other panels correspond to bins by satellite infall time, as labelled (most bins are 1 Gyr). Each panel shows the z = 0
distribution of satellites in phase space. Different satellite populations occupy distinct regions of phase space; compare for instance the upper-right panel
showing mostly infalling satellites, the centre-right panel showing mostly backsplash satellites and the lower-right panel showing mostly virialized satellites.

Each bin is also labelled with the number of satellites N contained in the bin.

appear in the trees as a single satellite. Finally, some haloes may
not host a galaxy. These three effects mean that observations of
satellite galaxies around a cluster do not correlate perfectly with the
distribution of DM haloes around that cluster; this needs to be taken
into account when applying our method to a sample of observed
galaxies, but does not impact the method itself. There is one other
contribution to the decrease in number of satellites with increasing
time since infall. Because our mass limit of 10" Mg, is relatively
large, at early times haloes above this limit were somewhat rarer.
The right-hand panel of Fig. 2 shows the effect of projection in
the radial coordinates on the same distribution as in the left-hand
panel. Features are shifted somewhat to lower radii (consistently
with our expectation of (g) = %) and broadened by the scatter
about this mean deformation. All the populations and features dis-
cussed above are still identifiable. Omitted from this diagram are
any foreground/background objects, which are common in observa-
tional samples, that could be confused with the satellite populations.
There is one other important effect to consider when interpreting
Fig. 2 (and others involving infall times). As a host halo accretes
mass, its virial radius grows (slowly, except in the case of major
mergers). Because of this, an orbiting satellite may appear to move

further in coordinates scaled to r;, than it otherwise would as the
coordinates grow around it. This does not have a large impact on the
positions, but contributes some of the scatter in the radial coordinate.
One might consider choosing some radius that is constant with time
to scale each halo, but other choices, such as the virial radius at the
last snapshot, also introduce similar effects.

Next, we consider the effect of projection on the velocity co-
ordinates. The upper-left panel of Fig. 3 shows the distribution of
satellite haloes in phase space at z = 0. A typical halo would, given
enough time, progress from large radii and low velocities down to
low radii and high negative velocities, then switch to high positive
velocity as it passes pericentre. From there it follows a series of pro-
gressively shrinking concentric semicircles or chevrons, switching
from negative to positive velocity at each pericentric passage (for a
more in depth theoretical background, see Bertschinger 1985, espe-
cially fig. 6 therein). This normal progression is well represented by
the distribution of our halo sample; however, the individual orbital
‘shells’ are not visible since they overlap, and we only expect one to
two shells given the orbital time-scales and ages of these systems.
Also, close encounters redistribute some haloes off this idealized
track.
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Figure 4. Same as in Fig. 3, but using radial distance from cluster centre projected along one axis of the simulation box and velocity projected along the same
axis (again simulating coordinates of an observed system). Much of the structure visible in Fig. 3 is lost in projection, but the use of LoS velocity data allows

4 R

better separation of different satellite populations than using the radial coordinate alone. The dashed grey line marks g = —3 - +2; see Section 4.2.

Based on this expected movement through phase space in time,
satellite haloes with different infall times should occupy different
regions of phase space. This is shown in Fig. 3, where the phase
space distribution of haloes is plotted for a variety of bins in infall
time. Fig. 4 shows the same binned distributions, but in projected
coordinates, simultaneously showing the effects of both radial and
velocity projections, but emphasizing the latter. Much of the struc-
ture visible in Fig. 3 is lost in projection, but haloes with different
infall times still occupy different regions of phase space.

4.2 Infall time PDFs

Since our ultimate goal is to model quenching, perhaps the most
directly useful question we can ask of our data set is, given a position
in projected phase space, what is the distribution of possible infall
times (or another parameter of interest), and what is the likelihood
of each? This question is easily answered in a statistical manner by
sampling all satellites in a small region of phase space and binning
them by infall time. The result is shown in Fig. 5 for a selection
of points in phase space, varying both the radial coordinate (left—
right across the panels) and the velocity coordinate (up—down). We
focus here on the trends with the velocity coordinate. The first
trend we note is that at a given radius, satellites with higher vy s

3 rvir

typically have slightly more recent infall times than their low vy os
counterparts. This is because a satellite with high vy ,s is more
likely to have a high total speed and can penetrate deeper into the
host potential in a given amount of time than a satellite with low
speed.

In some cases, the velocity coordinate allows us to discriminate
between different satellite populations. Consider the rightmost pan-
els (R = 1.5) of Fig. 5. One peak in the distribution of infall times
is clearly visible at all values of vy s, at a & 0.85; it is made up of
infalling satellites. A second peak at a =~ 0.6 is made up of back-
splash satellites, and is only present for low values of vi.s. The
backsplash galaxies have lower kinetic energy relative to the host
potential than recent infalls due to a combination of mass accretion
by the host (increasing o, therefore causing an apparent slowing of
haloes) and dynamical friction.

Given a sufficiently large sample of observed galaxies, the PDFs
we have created will allow us to statistically assign an infall time
to each one using all the available dynamical information and a
meaningful uncertainty in our assignment. We have developed a
code and a compact data table to this end which we are prepared to
share on request.

To test the ability of our PDFs to correctly assign an infall time
to a satellite halo, we use our PDFs to estimate the infall time of
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Figure 5. Probability density functions (PDFs) of infall times for a selection of points (R /ryir, V /o) in projected phase space. Each point is sampled in a
region out to a distance about 3 per cent of the full range of each coordinate from the labelled point. The number of satellites in each region is labelled N,

giving a measure of the statistics of each PDFE.

each satellite in our sample. This estimate is then compared to the
actual infall time of the satellite, which we know from tracking
its orbit. The distribution of At = t;,ry(actual)—t, ey (estimated)
is plotted in Fig. 6. A At of O represents a correct guess, so a
stronger peak about Ar = 0 represents a higher rate of success. As
a quantitative measure of the strength of the peak, we calculate the
standard deviation of the distribution. By using our PDFs based on
knowledge of the (R, V) coordinates of each satellite, we assign
the infall time correctly to within +2.58 Gyr in 68 per cent of
cases. For comparison, we also plot the distribution of Ar obtained
if only the position coordinate R of the haloes is known, accurate
to within +2.64 Gyr in 68 per cent of cases, and if none of the
coordinates are known, in this case, we simply draw values from the
distribution of infall times of our entire sample at random, and find
we are accurate within £3.10 Gyr in 68 per cent of cases. Finally,
we plot a curve showing the distribution of At for a particular
subsample of satellites chosen by eye which have ¥ > —;—‘ R 4.
This subsample is designed to retain primarily mfallmg satelhtes
(see Fig. 4), and in this case the assignment of infall times is even
more reliable. This demonstrates that if a particular population of
satellites is of interest, it is often possible to choose a region of
phase space that maximizes the likelihood of correctly assigning
tintanl- For this example, we correctly assign f;,g, within £2.48 Gyr

in 68 per cent of cases. In practice, this makes it possible to increase
the purity of an observational sample of galaxies at the expense of
completeness of the sample by limiting the region of phase space
from which the sample is drawn.

Fig. 7 shows the accuracy of the assignment of #;,¢,; at the 68 per
cent confidence level for bins in (R, V) space. The PDFs give the
most reliable results in those regions with both good accuracy and a
large population of satellites. In the outskirts of clusters, an accuracy
At of about 3 Gyr is sufficient to robustly separate infalling and
backsplash satellites.

We conclude that using all observable coordinates of a satellite
(R, V) offers an improvement in assigning s correctly over using
only the position coordinate R comparable to, but somewhat less
than, the improvement seen when using the position coordinate R
rather than no knowledge of satellite coordinates at all. Careful
selection of the region of phase space to be sampled can, in many
cases, further increase the reliability in estimating fig,;.

4.3 Mass trends

While haloes of different masses are expected to be self-similar in
most ways, we still find some trends with both host halo mass and
satellite halo mass. We study these trends by separating the haloes
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Figure 6. The distribution of Az, a measure of the rate of success of using
our PDFs to estimate the infall time #;n¢,y) of satellite haloes in our sample, is
plotted with a thick red solid line. A7 = 0 represents an accurate estimation,
while increasing |At| represents an increasing discrepancy with the correct
value. A sharp peak at Az = 0 therefore represents a high rate of success.
The black dotted line shows the distribution if we assume no knowledge
of the LoS velocity of the satellites, while the grey dotted line shows the
distribution if we assume no knowledge whatsoever of the coordinates of
the satellites. Each additional coordinate used increases the reliability of
the predictions. The thin solid blue curve shows the distribution of A¢ for a
subsample of satellites selected to study a particular population of satellites
(see the text for full details). This shows an example of restricting the region
of phase space considered to increase the reliability in estimating finfal-
We quantify the degree of success in estimating finran by the sharpness of
the peak in the distribution of Az, measured by its standard deviation. The
standard deviations for the four curves are 2.58, 2.64, 3.10 and 2.48 Gyr (in
the same order as labels in the legend). The number satellites used to test
the PDFs is labelled N.

0

2.0 3.50
3.25¢
3.002
3
2.75¢9
2.503
=
2.25¢
2.00%
X
1.75%
1.50%
1.255
1.00

1.5

1.0

0.5f

80 05 1.0 15 20 25
projected radial position R/r, at z=0

projected (LoS) velocity V; ¢/o at z

vir

Figure 7. The distribution of Ar at the 68 per cent confidence level in the
(R, V) plane; our PDFs will be most accurate when applied to satellites that
occupy the reddest (darkest) regions of the space. Use of the PDFs also
requires a reasonable sample size in the region of interest; contours (0.5 dex
intervals) illustrate the number of satellites per cell. We find that the PDFs
become too sparse for reliable use in cells containing less than a few hundred
satellites. The grey dashed line identifies the same region as in Fig. 4.

of interest — either hosts or satellites — crudely into a ‘high mass’
and a ‘low mass’ bin, then compare the distribution of satellites in
phase space and infall time for the two bins.

Fig. 8 shows a comparison of satellites around high- and low-
mass hosts in infall time versus radial position space (left-hand
panel), and in phase space (right-hand panel). Low-mass hosts are
defined to have 10" < M < 10'** M while high-mass hosts are
in the range 10" < M < 10" M. The population of satellites
around each type of host is normalized, then the two are subtracted
in each infall time — radial distance bin and compared to the fiducial
abundance of satellites in that bin. Cells with a reddish colouration
are preferentially occupied by satellites around high-mass hosts,
while cells with a bluish colouration are preferentially occupied by
satellites around low-mass hosts.

In the infalling population of satellites (+ < 4 Gyr in Fig. 8,
left-hand panel) the satellites of high-mass hosts appear to fall into
their host somewhat faster than the satellites of low-mass hosts;
at a given time since infall, a satellite of a low-mass host has a
larger typical radial distance than a satellite of a low-mass host. We
propose two possible explanations for this effect. First, satellites
of high-mass hosts tend to have more radial orbits than satellites
of low-mass hosts (Wetzel 2011), causing them to move radially
inward more rapidly on average. Secondly because the hosts are
continually accreting mass, their virial radius gradually increases.
Hosts with higher masses have higher present-day accretion rates;
this is visible in Fig. 8 (right-hand panel) where the region of phase
space occupied by infalling satellites shows an excess of satellites
around higher mass haloes (see also Wechsler et al. 2002, fig. 3
therein especially). Their satellites therefore appear to move inward
slightly faster than those of low-mass hosts in this coordinate sys-
tem. These two explanations could be considered an argument for
a different normalization of the radial coordinate; however, other
choices (e.g. the virial radius of the host at the infall time of each
satellite) still introduce similar effects, and the present virial radius
of the host has the advantage of being more closely related to ob-
servable quantities. A more practical approach is to compute PDFs
for narrow host mass bins (~0.5 dex) and use whichever is applica-
ble to an observed system of interest; our sample contains enough
satellites to make this feasible.

We also consider trends with satellite mass. Because satellite
mass typically decreases with increased time spent in a cluster
environment, we use the satellite mass at time of infall (first crossing
of 2.5r;;) as a characteristic mass for this analysis. Fig. 9 shows that
lower mass satellites experience backsplashes to larger radii than
high-mass satellites. This is because the slowing due to dynamical
friction is proportional to the mass of the satellite, so that higher
mass satellites lose a larger fraction of their kinetic energy during
a passage through a cluster. To account for this trend with satellite
mass, separate PDFs can be produced for relatively narrow bins in
satellite mass.

Care must be taken when using our method to interpret the distri-
bution of galaxies in a cluster. Baryons (especially the stellar com-
ponent) are typically more tightly bound than their associated DM
halo, and should therefore outlive the halo in the cluster environ-
ment. This restricts the satellites, as traced by galaxies, that can be
studied using our method to those which we expect to have a surviv-
ing DM halo. With the MDR1 data set, this corresponds to galaxies
with associated DM halo masses of ~10'"* M, or greater. Smaller
satellites may still be studied by using higher resolution simulations
[e.g. the Bolshoi simulation of Klypin, Trujillo-Gomez & Primack
(2011), which has identical parameters to MDR1 but with higher
resolution and a smaller box size]. Low-mass satellites are much
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Figure 8. Relative abundance of satellites in the space of infall times versus radial positions (left-hand panel) and phase space (right-hand panel), comparing
satellites around low-mass (10'4-10'4> M) hosts and high-mass (10'5-10"5 M) hosts. The two populations are normalized, subtracted in each bin, then
compared to the fiducial abundance of satellites in that bin (arbitrarily chosen to be the population with low-mass hosts). Only bins containing at least 100

satellites are shown.
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Figure 9. Relative abundance of satellites in the space of infall times ver-
sus radial positions comparing low-mass (10'19-10122 M) and high-mass
(101221028 p~1 M) satellites. The two populations are normalized, sub-
tracted in each bin, then compared to the fiducial abundance of satellites in
that bin (arbitrarily chosen to be the high-mass population). Only bins con-
taining at least 100 satellites are shown. High-mass satellites are slowed
more than low-mass satellites by dynamical friction and mass accretion by
their host, and therefore have lower typical backsplash distances than their
low-mass counterparts.

more abundant, so the smaller volume of a higher resolution simu-
lation should not impact our ability to obtain a large sample, except
perhaps for low-mass satellites around very large hosts (of which
there may only be a few in a simulation such as Bolshoi).

4.4 Resolution effects

As shown in Section 3, some haloes which experience a close ap-
proach to the centre of a larger halo experience artificial disruption.
We estimate that any given bin in our PDFs is less than 20 per cent
incomplete, and that our sample of satellites as a whole is less than
4 per cent incomplete down to 10'!9 Mg . The effect on the predic-

tive power of our method was investigated by generating an orbit
catalogue with extra orbits added to compensate for artificially dis-
rupted haloes. The effect of artificial disruption on the distributions
of At (such as those shown in Fig. 6) is very small, causing changes
of the order of a few tenths of a per cent.

Our initial interest for applications of our method is to large
satellites (halo masses > 10'%° M) around hosts with halo masses
210" M, which motivated our choice of the MDR1 simulation as
a starting point. Applying our method to smaller satellites of smaller
hosts is simply a matter of choosing an appropriate simulation; our
method is easily applied to any simulation that can be processed by
the ROCKSTAR code. The Bolshoi simulation is of particular interest
since it is identical to MDRI1 in all respects, save resolution and
could therefore be used in conjunction with MDRI1 to extend the
applicability of our method to lower mass ranges while maintaining
good statistics at the high-mass end.

5 CONCLUSIONS

The phase space distribution of infalling, backsplash and virialized
satellite haloes is different but not everywhere distinct. The LoS
velocity distributions we recover are in agreement with the results
of Gill et al. (2005). Like them, we find that different populations
of satellite haloes are better separated in phase space than in the
radial coordinate alone, but that there is no immediately obvious
cut that we can impose on the projected phase space coordinates of
a satellite galaxy to separate different populations. Mahajan et al.
(2011) identified some regions of projected phase space where parts
of the infalling or backsplash populations could be picked out with
little contamination by other populations. Building on this idea, we
have examined the entire projected phase space and determined the
confidence with which the time since infall can be assigned to a
satellite occupying that region. This lets us easily identify regions
where the time since infall can be determined accurately enough to
reliably separate satellite populations. Such regions that we identify
are a superset of those identified by Mahajan et al. (2011). This
allows an increase of the area of projected phase space and there-
fore the number of satellite galaxies available for use in studying
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SF and other effects that may depend on the orbital history of a
satellite.

We have developed a tool that estimates the infall time and a
confidence in the estimate for a satellite halo given its projected
phase space coordinates. The possible infall times given a pair of
projected phase space coordinates are weighted according to the
frequency of their occurrence in simulation, then an infall time
is randomly selected from this weighted distribution. We predict
that, when applied to a large sample of observed galaxies, this
method will allow correlations between infall times and satellite
SF histories to be studied. Our method is easily adapted to other
similar parameters (closest approach to host centre, time since first
pericentre, etc.) that will be considered in our forthcoming study
of SF quenching in cluster environments, and to ‘pre-processing’
scenarios — accretion on to a group-sized halo before accretion on to
a cluster-sized one. It would be straightforward to adapt our method
to systems at higher redshift where we think the different satellite
populations may be better separated in phase space than at low
redshift. Our framework would also be very well suited to studying
DM stripping of satellites.
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