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Abstract

Physical processes regulating star formation in satellite galaxies represent an area of on-
going research, but the projected nature of observed coordinates makes separating different
populations of satellites (with different processes at work) difficult. The orbital history of
a satellite galaxy leads to its present-day phase space coordiantes; we can also work back-
wards and use these coordinates to statistically infer information about the orbital history.
The estimated orbital histories of a large population of satellites can then be compared to
their star formation histories. This is expected to reveal both a trigger time when the star
forming properties of satellites begin to be affected by a high density environment, and the
timescale on which environmental quenching operates. Finally, this can be related back to
the physical process(es) regulating star formation in high density environments.

We use merger trees from the MultiDark Run 1 N-body simulation to compile a cata-
logue of the orbits of satellites in cluster environments. We parameterize the orbital history
by the time since crossing within 2.5 rvir of the cluster centre and use our catalogue to
estimate the probability density over a range of this parameter given a set of present-day
projected phase space coordinates. We show that different populations of satellite haloes
occupy distinct regions of phase space, and semi-distinct regions of projected phase space.
We generalize this result by producing a probability distribution function (PDF) of possi-
ble infall times at every point in projected phase space. Although our method focusses on
time since infall, it is easily generalized to other orbital parameters.

We apply our method to determining the infall time PDFs of a large sample of observed
cluster satellite candidates from the Sloan Digital Sky Survey for which spectroscopic
redshifts and g- and r-band bulge-disk decompositions are available. We use galaxy colour
as a proxy for star formation history (SFH) and model the distribution of satellite galaxy
colours as two gaussian populations, i.e. a red peak and a blue peak. We derive a Markov
Chain Monte-Carlo (MCMC) method to obtain the colour distribution as a function of
the time since infall into the cluster environment. Although our analysis focusses on this
single measure of SFH, it can be generalized to other parameterizations as well. Our
implementation of this method is still being tested and tuned, but we use a second simpler
and faster (but much cruder) method to obtain a preliminary estimate of the evolution
of the colour distribution. Our results are suggestive of a quenching process that begins
within perhaps ±1 Gyr of virial radius crossing and which slows after pericentric passage.
Although the regions of projected phase space occupied by satellites just before and just
after pericentric passage are partially degenerate, the colour evolution we observe – redder
disks in the post-pericentre population – is not symmetric about the pericentre crossing.
We stress that results obtained with this second method come with important caveats.
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Chapter 1

Introduction

It has long been known that galaxy properties, notably morphology, colour and star for-
mation rate, are dependent on environment – whether a galaxy is isolated in space or part
of a larger structure. We aim to gain some insight into the dominant process(es) that drive
change when a galaxy moves from a low density to a high density environment. We use
a combination of numerical simulation and observational data, presented in Chapter 2, to
tackle this problem. Simulation output is used to learn about the statistical properties of
cluster satellite orbits and their relationship to their position in projected phase space in
Chapter 3. We then apply this knowledge of orbit statistics to a sample of observed galax-
ies and relate their orbits to their colours in Chapter 4. Galaxy colour is correlated with
the star formation history (SFH) of the galaxy, which can in turn be related to processes
that quench (or trigger) star formation. We summarise our findings and discuss them in
the broader context of the litterature in Chapter 5. We also suggest possible extensions of
this work.

First, we provide some context on the formation of large-scale structure in the Universe
(§1.1) and some of the fundamentals of cosmological numerical simulations (§1.2). We
give an overview of some well-studied mechanisms thought to affect star formation in
high density environments in §1.3. In §1.4 we provide some background on the properties
of orbits in clusters and how they are expressed in terms of the intrinsic properties of
the host system. We also identify which properties are directly observable. We outline
the relationship between the SFH and colour of a galaxy in §1.5. Finally, we give our
assumptions regarding cosmological parameters in §1.6.

A substantial portion of the results presented in this thesis were published in Oman et al.
(2013) – in particular the majority of Chapter 3 (excepting sections concerning “interlop-
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ers”). The results in Chapter 4 are new; we hope to include them in a future publication.

1.1 Gravitational Collapse and Cluster Formation

Galaxy clusters are the largest virialized structures in the Universe, and they are valuable
cosmological laboratories, allowing the study of not only structures and processes intrin-
sic to the cluster, but also the measurement of several more fundamental parameters of
cosmology (e.g. the universal baryon fraction, σ8). Cluster formation is an inherently
nonlinear process and is therefore difficult to model in its entirety. Nevertheless, there is
a rich theory describing the portions of the process which can be linearized, and some of
the nonlinear processes under simplifying assumptions or symmetries as well. Background
for the remainder of this section is drawn from Binney & Tremaine (2008) except where
indicated otherwise. Rather than give an overview of the theory itself, we focus instead on
some of the most interesting consequences of the theory and those that are most relevant
to the present thesis. We restrict ourselves to the standard Λ-Cold Dark Matter (ΛCDM)
theory, ignoring more exotic models which, while potentially correct, have yet to produce
a front-runner with an overall match to observations superior to ΛCDM.

At early times, the Universe had a homogeneous and isotropic distribution of matter on
large scales with random density fluctuations described by a characteristic power spectrum.
The background Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric is expanding. Ini-
tially the energy density of the Universe is radiation dominated, but as expansion progresses
transition to matter domination occurs. Density perturbations become unstable and be-
gin to collapse, with overdense regions collapsing to form haloes and underdense regions
“collapsing” to form voids. During the era of matter domination, perturbations grow as t

2

3

while in the linear regime, i.e. until the density of the perturbation is no longer of the same
order as the background density. Initially, only perturbations to the dark matter (DM)
component grow since baryons are coupled to the radiation field, but once the Universe
cools sufficiently for recombination of protons and electrons this coupling ceases and the
baryons begin to collapse into the (already partially formed) DM structure. Without DM
(i.e. if all matter coupled to the radiation field), structures smaller than ∼ 10 Mpc could
not form.

As the perturbations continue to grow, they leave the linear regime. Gravity begins
to locally “win out” against the global expansion of space, and shells of matter begin to
undergo a net collapse rather than decelerating expansion. This transition is termed the
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turnaround of the shell. It occurs at a characteristic time:

tmax = 1.095
ti

δ
3

2

i

(1.1)

where ti is the initial time (set around z = 3100, when matter domination begins) and δi is
the overdensity enclosed by the shell at that time. A series of collapsing shells comprise a
single structure which, depending on their total mass, will form a galaxy, group or cluster
halo. The largest overdensities and smallest structures – i.e. the most concentrated – are
the first to collapse. Subsequently, collapsed structures fall together to form ever larger
organized structures; the largest today are the filaments, walls and nodes of the cosmic web,
which is the natural structure formed by the expansion of underdense voids. Concisely,
structure formation proceeds “bottom-up”. The outermost shell bound to a structure in an
Einstein-de Sitter cosmology is located at a critical radius given by Gunn & Gott (1972):

Rcrit =

(

9GM∞t2

2

)
1

3

(1.2)

where M∞ is the mass of the structure as t → ∞. They also give the radius of the
zero-velocity surface, which is that of the shell just turning around at time t:

Rv=0 =

(

8GM(2t)t2

π2

)
1

3

(1.3)

whereM(t) is the mass of the density perturbation at time t (which can be derived straight-
forwardly from the initial collapse time of the perturbation, its initial mass, the magnitude
of the initial overdensity, the background density of the Universe and the critical density
of the Universe at the time of initial collapse). The corresponding expressions in a general
FLRW metric are somewhat more complicated; see Mo et al. (2010) for a discussion.

As collapse continues, other nonlinear effects – specifically violent relaxation and phase
mixing – intervene and cause the virialization of the collapsing halo at about t = 2tmax.
Once this process is complete the halo is expected to at least approximately satisfy the
virial theorem. At this time the mean density inside the virialized region of the halo turns
out to be about 200 times the critical density, leading to the characteristic radius R200 and
the mass enclosed within it M200.

The mass distribution of DM haloes is quantified using the Press-Schechter theory
(Press & Schechter, 1974), which was extended to take subhaloes into consideration by
Bond et al. (1991) and to predict the merger rate of haloes as a function of mass by
Lacey & Cole (1993).
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The mass function is given by:

dn

dM
(M, t)dM =

√

2

π

ρb
M2

δc(t)

σ(M)

∣

∣

∣

∣

d log σ

d logM

∣

∣

∣

∣

exp

[

− δc(t)
2

2σ2(M)

]

dM (1.4)

where σ2(M) is the variance of the overdensity field in a spherical region containing mass
M . The mass distribution of haloes obeys an approximate power law with negative slope
at low masses, and is cut off exponentially at masses greater than a characteristic mass Mc,
which at present turns out to be ∼ 7.4 × 1014 M⊙. This is also the present characteristic
mass for clustering of DM structure.

The merger rate, stated as the probability that a halo of mass M1 will merge with
another halo of mass ∆M = M2 −M1 at time t, is:

d2p

d log∆Mdt
(M1 → M2|t) =

√

2

π

1

t

∣

∣

∣

∣

d log δc
d log t

∣

∣

∣

∣

(

∆M

M2

) ∣

∣

∣

∣

d log σ2

d logM2

∣

∣

∣

∣

δc(t)

σ2

× 1
(

1− (σ2/σ1)
2
)

3

2

exp

[

−δc(t)
2

2

(

1

σ2
2

− 1

σ2
1

)] (1.5)

This merger rate is averaged only over accretions onto primary haloes; it does not account
for mergers between subhaloes. The current merger rate for equal-mass mergers is predicted
to be in sharp decline over the past few Gyr for haloes . 1014 M⊙.

The extended Press-Schechter theory is limited in that it does not predict the spatial
and velocity (phase space) distribution of haloes, and does not describe subhaloes after
they join their host.

Bertschinger (1985) (see also Fillmore & Goldreich, 1984) complements the Press-Schechter
theory nicely with some analytic work on the dynamics of matter shells falling into a struc-
ture after it has already formed (secondary infall). He finds that these shells re-expand out
to consecutively smaller radii over the course of a few orbits (orbit here meaning collapse to
a point then re-expansion), then settle down to a periodic orbit out to a maximum radius
of 0.81rturnaround. His fig. 6 shows the idealized phase space trajectory of a secondary infall
shell. These results assume spherical symmetry, so all orbits are fully radial and ignore
effects such as dynamical friction. Still, the backsplash radius of 0.81rturnaround can be
considered an upper limit, and simulations show that the trajectory through phase space
is at least a qualitatively correct description of the movement of subhaloes.
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1.2 N-Body & Hydrodynamic Simulations

Once analytic treatment of nonlinear behavior in structure formation becomes impossible,
the natural tool to turn to is simulation. Broadly speaking, the problem to solve has
three components. The first is the expanding background FLRW metric, governed by
the Friedmann equations. These have an analytic solution and are trivially encoded in
simulations. The second and third are the collisionless and collisional fluid components.
The evolution of these components must be solved in two stages; the distribution of material
must be discretized, then the equations for the force(s) acting on each discrete element must
be solved and used to advance the distribution in time.

1.2.1 N-Body Simulations

The simplest cosmological simulations include only DM, which is modelled as a collisionless
fluid. The matter distribution is discretized as an ensemble of particles in all mainstream
modern codes, with each particle representing a (large) collection of physical fundamental
DM particles. The particles are assumed collisionless, so the force between them is “soft-
ened” so that two particles that pass through each other behave more like two clouds of
mass (a close analogy would be a pair of star clusters) passing through each other, rather
than a pair of point masses experiencing a close approach. The most intuitive method of
solving for the gravitational force felt by each particle is simply to sum up the contribution
of each other particle as:

~Fi = −
∑

j 6=i

G
mimj(~ri − ~rj)

(ǫ2 + |~ri − ~rj|2)
3

2

(1.6)

where ǫ is the softening term. This solution yields a result as accurate as the discretization
allows, but is computationally very slow. In practice it is only used to calculate the
contribution from very nearby particles, while the contribution from more distant particles
is approximated using faster methods. A tree method divides the distribution of particles
into a hierarchy of bins. For instance, the simulation box may be cut into octants, then each
octant which contains multiple particles is divided itself into octants, proceeding recursively
until each cell contains a single particle. This hierarchical organization can then be used
to rapidly compute the centre of mass of all cells (including parent cells that contain
subdivisions). The force on each particle is then calculated using contributions from other
cells, with nearby contributions calculated from finer cells for accuracy while contributions
from collections of more distant particles are combined into a single coarser cell for speed.
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Perhaps the most well-known tree algorithm is that of Barnes & Hut (1986). But again in
practice a tree code is somewhat unwieldly, with a very direct tradeoff between accuracy
and speed. Furthermore, periodic boundaries – not referring to the simple contribution
of a particle near one edge of the box being considered nearby to a particle near the
opposite edge, but the very long range forces over multiple box lengths – are awkward to
handle. Tree methods are therefore usually reserved for the calculation of intermediate
range contributions to the gravitational force.

Particle-mesh (PM) solvers are the approach usually used on large scales. The simu-
lation box is overlaid with a grid or mesh, and the particle distribution is projected onto
the mesh, giving a sampling of the density field at each mesh point. Poisson’s equation:

∇2φ = 4πGρ (1.7)

can then be solved for the gravitational potential φ extremely efficiently using Fourier meth-
ods, which account naturally for a periodic boundary condition. These methods struggle
to accurately resolve forces in regions where the mean interparticle distance is much less
than the mesh spacing, and using an extremely fine mesh becomes very computationally
intensive. In many ways PM methods are complementary to tree methods, and the two are
usually combined into “treePM” methods in state-of-the-art codes (Xu, 1995, is the first
example). Until recently so-called adaptive mesh refinement (AMR) codes were a popu-
lar alternative to treePM methods, using Fourier solutions on nested meshes to increase
resolution where required, but these have fallen somewhat out of favour on grounds of
computational efficiency (O’Shea et al., 2005).

Given a particular method to solve for the gravitational force on each particle tuned
to a desired accuracy, there are essentially two remaining parameters which will control
the computational demands of a simulation. The first is the number of particles which
has grown rapidly from humble simulations of a few tens of particles a few decades ago
to simulations of approximately 1010 particles today. The second parameter is the size
of the box to be simulated. The largest boxes are on the order of a few Gpc on a side.
For a fixed number of particles, a larger box is easier to simulate than a smaller box
(Boylan-Kolchin et al., 2009). A reduction in box size corresponds to an increase in mass
resolution, and the lowest mass structures are the first in which nonlinear effects become
important. Furthermore, there are more particles per (nonlinearly-behaving) structure,
making calculations more involved, and the time resolution also needs to be increased
to accurately trace the orbits of particle near the centres of haloes. A final key point
relating to resolution is that the time between the accretion of a subhalo onto a host and
the eventual “complete” (as far as the simulation is concerned) disruption of the subhalo
increases with the resolution of the simulation – this is clearly an unphysical effect.
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1.2.2 Hydrodynamical Simulations

Different methods are required to include baryonic gas physics in a simulation. There
are, broadly speaking, two classes of methods – the following brief overview is based on
the summary of Springel (2010), and references therein. The first is smoothed-particle
hydrodynamics (SPH), which adopts a Lagrangian point of view. The required fields (e.g.
density, pressure, temperature, velocity, etc.) are computed at the location of each particle
by “smoothing” over the properties of nearby particles. The relevant equations of fluid
dynamics and any other desired baryonic physics are then solved on the smoothed fields.
This method’s strength is a natural adaptive scale, where high resolution can be achieved
in high-density regions for accuracy alongside low resolution in low-density regions for
speed. The primary weakness of SPH codes is difficulty in resolving shocks, and more
generally in dealing with any sharp boundary or discontinuity, since these will forcibly be
smoothed out by the method. The second class of methods use an Eulerian point of view;
these mesh codes are operationally similar to the PM methods described in the context
of gravity solvers, but solve the equations of hydrodynamics (and possibly also radiative
transfer, etc.) instead of gravity. AMR is frequently employed to increase resolution
where it is most needed. AMR codes are excellent at resolving shocks and discontinuities.
Their primary drawback is that they are “non galilean-invariant”, in the sense that it is
difficult to deal with bulk flows (especially supersonic flows) and keep the refined mesh
spatially matched to the region which requires high resolution, at least in a way that is
computationally efficient. Some of the latest methods use a “moving mesh” which purports
to have most of the advantages of both SPH and AMR with few of the drawbacks. These
methods are relatively new, the first presented by Springel (2010), and have yet to see
extensive use, but present exciting prospects.

1.3 Quenching

We know that galaxies in clusters are typically more ‘red and dead’ than their counterparts
in the field (Hogg et al., 2004; Balogh et al., 2004), as well as dominantly elliptical rather
than spiral (the so-called morphology-density relation, see Dressler, 1980). This is thought
to be due to a mechanism or combination of mechanisms that halt the collapse of cold
gas into stars in a satellite galaxy as it orbits within a deep potential well – either by
heating or removing the gas or by preventing the cooling or accretion of additional gas and
consuming the existing supply. There is a long list of such mechanisms; we describe some
of the most studied ones – ram pressure stripping; tidal stripping; mergers, harassment
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and cannibalism; strangulation – in §§1.3.1-1.3.4 below. Numerous arguments have been
presented in favour of and against each, but in the end it seems reasonable to assume
that several or all are at work (Lewis et al., 2002; Gill et al., 2005; van den Bosch et al.,
2008); the objective then becomes to determine which is dominant in driving the observed
star formation/colour and morphological trends (which may each be driven by separate
mechanisms). There are also mechanisms entirely internal to a galaxy that can contribute
to its quenching, a few of these are briefly described in §1.3.5. While these cannot explain
trends that are a function of environment, they contribute to galaxy evolution and must
be taken into account in a complete model (see, for instance, Peng et al., 2010). Some of
these may even couple to external quenching mechanisms, for instance by making part of
the galactic gas supply more susceptible to stripping by an external mechanism.

In addition to the trends observed with environment, an evolution of the population
of galaxies within clusters is observed with redshift. The classic example is the Butcher-
Oemler effect of Butcher & Oemler (1978), which shows that in similar clusters at low and
high redshift, those at high redshift contain proportionally more blue (presumed spiral)
galaxies than those at low redshift, which instead have a surplus of S0s (lenticulars).
The cause of the Butcher-Oemler effect is still a topic of active discussion (especially its
extension to group environments, see McGee et al., 2009; Li et al., 2012), and the effect
has been extended to include an evolution in the mid-infrared properties of cluster galaxies
(Haines et al., 2009).

It has also become clear that environmental effects on galaxy evolution are not limited
to cluster environments; the group environment is also hostile to star formation. While
the distinction between a “poor cluster” and a “rich group” can be somewhat nebulous,
Balogh & McGee (2010) argue that groups with masses of 1013 M⊙ impact star formation,
and potentially even lower mass groups as well. It is widely agreed (Balogh et al., 2000;
De Lucia et al., 2012; Mahajan et al., 2012; Wetzel et al., 2013a) that “group preprocess-
ing” will be an important aspect of a complete model of environmental effects on star
formation.

One way to attempt to determine which mechanism is dominant is to attempt to de-
termine (i) when quenching starts and (ii) the quenching timescale. While knowing these
two quantities would not definitively identify a dominant mechanism, they can be used
to constrain the mechanism or combination of mechanisms at work. The measurement of
these two quantities has been attempted by several authors (e.g. Balogh et al., 2000;
Kauffmann et al., 2004; van den Bosch et al., 2008; Weinmann et al., 2009; Peng et al.,
2010; McGee et al., 2011; Taranu et al., 2012; Wetzel et al., 2013a; Haines et al., 2013;
Wetzel et al., 2013b), but it is difficult to make and no consensus on their values has yet
been reached.
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It has so far been found difficult to produce a semi-analytic model for quenching
that both reproduces the observed star formation rate (SFR) distribution in clusters
(Wetzel et al. (2013a), but see Weinmann et al. (2010) for some recent improvements).
However, all the environmental quenching mechanisms listed above have at least one com-
mon characteristic : each is sensitive to the path taken through the cluster. Tidal stripping
is strongest near the cluster centre. Ram pressure stripping varies with the local density
of hot cluster gas and the relative velocity of the satellite, both of which vary radially in
the cluster. Mergers are more probable in the outskirts of clusters. Harassment is most
effective during high speed encounters, which occur near the cluster core. Strangulation
is triggered by the removal of the halo gas of the satellite, ostensibly via one of the afore-
mentioned mechanisms. An environmental quenching model can therefore reasonably be
expected to depend on the previous positions and velocities, or more concisely the orbital
history, of satellite galaxies.

1.3.1 Ram Pressure Stripping

Gunn & Gott (1972) give a simple theoretical argument for the removal of material from
a gas disk moving through the intracluster medium (ICM). The ram pressure exerted by
the ICM on a galaxy moving through it is:

Pr ≈ ρICM(rc)|v|2 (1.8)

where ρICM(rc) is the density of the ICM at the cluster-centric radius of the galaxy and |v|
is the speed of the galaxy relative to the cluster. Stripping will occur if the ram pressure
exceeds the force per unit area binding gas to the galaxy. For a typical disk/spiral, this
force per unit area is (using the more modern notation of Jáchym et al., 2007):

Fb =
∂Φ(rg, zg)

∂z

∣

∣

∣

∣

max

ΣISM (1.9)

where Φ(rg, zg) is the total gravitational potential in galacto-centric cylindrical coordinates
and ΣISM is the surface density of the interstellar medium (ISM). The condition for ram
pressure stripping is therefore:

ρICM(rc)|v|2 ≥
∂Φ(rg, zg)

∂z

∣

∣

∣

∣

max

ΣISM (1.10)

The more recent work of Abadi et al. (1999) and Jáchym et al. (2007) uses numerical
simulations to explore the limitations of the simple model of Gunn & Gott (1972). They
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raise several important follow-up points to this simple model. In particular, ram pressure
stripping is most efficient if the disk orientation is face-on to the wind direction. Stripping
can be enhanced via other mechanisms, e.g. harassment (see §1.3.3) can puff up the disk
and reduce its binding energy, or star formation activity can disrupt GMCs and allow
efficient coupling with the wind, which is otherwise impossible for the cold gas phase.
Even if full-blown ram pressure stripping is not in effect, thermal evaporation of the ISM
through contact with the hot ICM or viscous stripping of the disk as the ICM wind flows
by can remove gas, though at a lower rate. Stripping can even be enhanced by the debris
left behind by earlier stripping events, which leave higher-density pockets in the ICM,
thus increasing the ram pressure. On the other hand, the approximation of Gunn & Gott
(1972) can also overestimate the amount of stripping by neglecting the impulse-like nature
of the ram pressure interaction which only acts for a very short time as the galaxy passes
pericenter, and also by neglecting the possible re-accretion of material back onto the ISM.

There is also direct observational support for ram pressure stripping, which produces a
characteristic bending of the disk and formation of a tail behind the galaxy. Smith et al.
(2010b) is one example of a recent analysis which identifies 13 ram pressure stripping event
candidates in the Coma cluster. They point out that the majority of tails are oriented
away from the cluster centre, suggesting that ram pressure stripping acts rapidly on the
first approach to the cluster core.

1.3.2 Tidal Stripping

The differential force from a host cluster on a satellite galaxy can also remove mass from
the satellite. The satellite DM halo is the first component affected as it is the most diffuse,
followed by the hot gas halo and, in the case of an especially strong tidal field, possibly
the gas and stellar disks.

In a very simplified picture where the host and satellite are idealized as well separated,
it is easy to derive an approximate measure of the tidal stripping effect. Along an axis
connecting the centre of the host and satellite (which are separated by R), the tidal ac-
celeration felt by a test particle a distance r from the centre of the satellite is, to first
order:

atidal =
2rGMhost(< R)

R3
(1.11)

Näıvely, if the magnitude of this acceleration exceeds the gravitational acceleration due to

10



the satellite, we expect the test particle to be stripped, giving the condition:

GMsat(< r)

r3
<

2rGMhost(< R)

R3
(1.12)

Or, in terms of the average densities of the host and satellite1:

ρ̄sat(< r) < 2ρ̄host(< R) (1.13)

Thus, very crudely, the satellite will be stripped until its mean density is on the order of
the mean density of its host inside its orbit. A much more detailed analytical treatment is
given by Merritt (1983).

Simulations are a powerful tool to study the tidal stripping of DM haloes since the
simulation requries only gravitational physics. For instance, using simulations Gao et al.
(2004) find that 92 per cent of the mass in subhaloes of clusters at z = 1 has been stripped
by z = 0 (i.e. over a period of about 8 Gyr). Warnick et al. (2008) find that a typical
subhalo loses about 30 per cent of its mass per orbit to tidal stripping, while a subhalo
on a very eccentric orbit may lose up to 80 per cent of its mass (both these quantities
do not take into account satellites that are completely disrupted, i.e. lose 100 per cent
of their mass in an orbit). A more complete analysis requires the inclusion of baryonic
physics, both to examine the effect of tides on the galaxy hosted by a halo, and to account
for the additional gravitational force provided by the galaxy. The first work studying
tidal stripping specifically in a full-fledged hydrodynamical simulation is by Limousin et al.
(2009). Their results suggest that the inclusion of baryonic physics makes the stripping of
DM haloes more efficient in the cores of clusters, and that the stellar component of galaxies
is much less sensitive to tidal stripping than the DM halo.

Even if the tidal field is not strong enough to actually strip matter from the satellite, it
may trigger other effects. Tidal heating may inject energy into the gas, making it easier to
remove by the action of ram pressure. Conversely, a bar instability can be triggered, which
acts to funnel gas toward the center of the galaxy and bind it more tightly (Mayer et al.,
2006). Tidally induced collisions of GMCs can trigger star formation, and more broadly
tides are capable of driving the morphological evolution of a galaxy (Byrd & Valtonen,
1990).

1A slightly more detailed calculation by Binney & Tremaine (2008) gives nearly the same result:
ρ̄sat(< r) < 3ρ̄host(< R)

11



1.3.3 Mergers, Harassment and Cannibalism

These three types of interaction describe interactions between galaxies in the cluster. Ma-
jor mergers are dramatic events capable of completely changing the morphology and star
forming properties of the participating galaxies, but are relatively rare in the cluster en-
vironment due to the high relative speeds of galaxies (Tormen et al., 1998). This makes
major mergers an unlikely candidate to drive the evolution toward a population of que-
scient galaxies. Nevertheless, when a major merger does occur, a starburst is triggered and
consumes up to 80 per cent of the initial mass in gas to stars, leaving little for continued
star forming activity (Cox et al., 2006).

Minor mergers are also rare for the same reason, but close high speed encounters be-
tween satellites are common. Moore et al. (1996) showed that a typical satellite galaxy
experiences a close encounter with an L∗ (or larger) galaxy about once every Gyr. Even a
single such interaction can be sufficient to trigger a bar instability and pull out long streams
of material which are subsequently easily stripped, and may trigger starbursts which rapidly
consume gas as well. At first this high interaction rate seems contradictory with the ob-
servation that very few cluster satellites are seen to be interacting (Dressler et al., 1994),
but this is explained by the very short duration of the interactions. The collective effect
of these repeated encounters is termed “harassment”. A handful of harassing encounters
are sufficient to drive evolution from a strong spiral morphology to an S0 (lenticular).

More recent work by Smith et al. (2010a) – which focusses on dwarfs, but contains some
results that are more generally applicable – points out that harassment is highly dependent
on the orbit of a galaxy, with most encounters occuring close to the centre of the cluster.
This suggests that the effects of harassment should not become apparent until a galaxy
approaches its pericenter. Harassment effects are particularly strong for galaxies that have
small apocentric distances (and so continue to be harassed on a continuous basis).

Galactic cannibalism refers to a large central galaxy consuming smaller galaxies as they
pass, leading to the formation of a cD-type “supergiant elliptical” (Ostriker & Hausman,
1977). While this process certainly stops star formation in the accreted galaxies (if it had
not halted already), it also completely destroys them, so cannibalism cannot contribute to
the abundance of red galaxies in clusters. Furthermore, cannibalism is inefficient in the
cluster environment due to the high velocity dispersion of the satellites; it occurs primarily
before cluster virialization (Tovmassian & Andernach, 2012).
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1.3.4 Strangulation

Strangulation (sometimes also called starvation) is a mechanism – or perhaps more accu-
rately class of mechanisms – in which the gas supply of a galaxy is cut off so that star
formation eventually halts after the gas supply in place is depleted. The gas supply can
be cut off in a number of ways, e.g. removal of a hot gas halo (McCarthy et al., 2008;
Font et al., 2008), removal of HI (Boissier et al., 2012), direct removal of molecular gas
(Koopmann & Kenney, 2004), etc. The original argument by Larson et al. (1980) was
that the gas consumption timescale in a typical spiral galaxy is much shorter than the
Hubble time, so the gas must be replenished for star-forming galaxies to exist at all. Clus-
ters could provide a truncation mechanism, but to explain the Butcher-Oemler effect the
truncation must not occur abruptly upon accretion onto the cluster. They also note that
a typical depleted spiral can internally replenish its gas supply via stellar winds, so active
stripping must be ongoing for a galaxy to remain quenched.

A number of authors have since provided strong indirect observational evidence for
strangulation models (e.g. Balogh et al., 2000; van den Bosch et al., 2008; Haines et al.,
2013), and more broadly quenching timescales are typically found to be on the order of a
few Gyr, which is consistent with a strangulation model (though see Wetzel et al., 2013a,
which finds a much shorter timescale for quenching, but also a long delay before quenching
begins, which might also be associated with strangulation).

1.3.5 Internal Mechanisms

There are also mechanisms with no direct environmental dependence that can act to quench
star formation. Star formation feedback (often called supernova (SN) feedback) occurs
when a new stellar population is formed. The hottest, brightest, most massive stars burn
rapidly and explode as SNe after a relatively short delay. This injects large amounts of
energy into the surrounding gas, potentially enough to heat it and halt star formation or
even eject material from the galaxy entirely (Dekel & Silk, 1986; Veilleux et al., 2005).

Active galactic nucleus (AGN) heating occurs when powerful radiation and outflows
driven by accretion onto an AGN heat or expel galactic gas (McNamara et al., 2006;
Croton et al., 2006; Gabor et al., 2010). The end result is similar to SN feedback; heating
or expulsion of gas prevents star formation.

The same mechanism that maintains the hot gas halo in a galaxy cluster can also occur
in galaxies. Under the right conditions (for instance a halo mass of at least 1012 M⊙, see
Dekel & Birnboim, 2006), gas is heated as it falls into the DM halo and forms a standing
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shock front, which then shock heats additional infalling gas (Birnboim & Dekel, 2003).
This prevents direct ’cold-mode’ accretion from feeding the galactic disk which supplies
the fuel for star formation.

While internal mechanisms cannot directly account for the observed environmental
dependence of morphology, colour and SFR, these mechanisms can couple to environmental
effects – e.g. by heating material, making it more susceptible to environmental stripping
mechanisms – and must be taken into account in a model that seeks to capture a complete
picture of galaxy formation and evolution.

1.4 Coordinates, Observables and Orbits

In order to compare the results of different authors, it is necessary to introduce several scale
radii. These are analogous in definition to the R200 mentioned above except that depending
on context different overdensities may be used (100 rather than 200, for instance) and the
reference density may be the critical density or the background density (ρc = Ω−1

m ρb).
Subscripts are used to denote both the overdensity and the reference density, so R100c

refers to the radius enclosing a mean density 100 times the critical density while R360b

is the radius enclosing 360 times the background density. This last scale radius is the
one used throughout this thesis; we frequently call it Rvir. Any other scale radius will be
explicitly specified.

Satellite orbits in a cluster are not randomly distributed. Wetzel (2011) finds, at z = 0,
that their mean circularity is

√
1− e2 = 0.52 (i.e. eccentricity of 0.85), and the median

pericentre is 0.21R200c ∼ 0.15R360b. Both quantities have a standard deviation of about
0.2. The median pericentre and mean circularity both decrease in higher mass host haloes,
but no trend with satellite mass is noted. Gill et al. (2004) find somewhat different values,
with a mean eccentricity of 0.61 and a mean pericentre of 0.35R340b ∼ 0.35R360b, again with
a scatter of 0.1–0.2. Mamon et al. (2004) gives the maximum apocentric, or “backsplash”,
distance for satellites at 2.5R100c ∼ 2.5R360b, with typical backsplash distances anywhere
from 1.0R360b to 2.5R360b. Wetzel et al. (2013b) give a somewhat lower maximum back-
splash distance of about 2.5R200b ∼ 1.4R360b We would expect higher mass satellites to
have lower backsplash distances since the magnitude of dynamical friction is proportional
to the mass of the satellite.

The orbital history of a galaxy is not directly observable; if we hope to compare orbit-
based environmental quenching models to observational data, we need some way to charac-
terize it. We might parametrize the orbital history of a galaxy in any of a number of ways
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– for instance by the time since infall into the cluster potential, the distance of closest ap-
proach to the cluster centre or the number of orbits completed since infall – then attempt
to find correlations between these parameters and observables using N-body simulation
data. The observables we consider available are the distance between the satellite and the
cluster centre projected on to the plane of the sky and the component of the velocity of
the satellite relative to the cluster centre along the line of sight (LoS). In some nearby
clusters it may also be possible to obtain distances to the cluster centre and the satellite via
direct distance measurements (e.g. Tully-Fisher relation, surface brightness fluctuations,
SNIa luminosities, etc.), but in general these will be much less precise than the other two
coordinates – we will consider this information inaccessible (for an interesting analysis of
satellite orbits similar to ours but focussing on the satellites of the Milky Way for which
distances and sometimes proper motions are available, see Rocha et al., 2012).

Several authors (Balogh et al., 2000; Gao et al., 2004; Wang et al., 2011; De Lucia et al.,
2012; Taranu et al., 2012) have shown that the present radial distance from the cluster cen-
tre is negatively correlated to the time since infall into the cluster and other orbital param-
eters. Gill et al. (2005) were amongst the first to compare the velocity distributions of dif-
ferent satellite populations (see also Wang et al., 2005), and more recently Mahajan et al.
(2011) and Noble et al. (2013) have used methods for seperating satellite populations based
on, amongst other parameters, their LoS velocities.

1.5 Star Formation and Galaxy Colour

Very roughly speaking, the relationship between galaxy colour and SFH is simple. A galaxy
that has had active star formation recently will include bright, blue (e.g. O- and B-type)
stars as well as dimmer, redder stars. The brightest, bluest stars are the shortest lived, so
as they burn out only the longer lived redder stellar populations remain and the overall
colour of the galaxy reddens with increasing time since active star formation. In more detail
a stellar synthesis model must be adopted. The model of Maraston (2005, see references
therein for some examples of the many other models that have been proposed) was used to
guide some of the work in the present thesis. Bruzual & Charlot (2003) provide a concise
example of how the SFH and metallicity of a galaxy can be constrained from its colour
using a stellar population synthesis model.

Observationally, two populations of galaxies are identified by their colours. Strateva et al.
(2001) identified a red population and a blue population in the Sloan Digital Sky Survey
(SDSS), and a correlation with morphology, with red galaxies being predominantly early-
type (E/S0) and blue galaxies late-type (spiral). They note that, of all possible colours
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defined using SDSS filters, (u− r) gives the best separation between the two populations.
Blanton et al. (2003) also find a significant bimodality in (g− r) colour, and note a strong
luminosity dependence; more luminous galaxies are redder. The population of red galaxies
is essentially identical in low and high density environments (Hogg et al., 2004). There
are some weak trends, with luminosity, size and velocity dispersion increasing with the
density of the local environment and surface brightness decreasing (Bernardi et al., 2003).
The main evolution with environmental density is the relative abundance of red and blue
galaxies (Hogg et al., 2004; Balogh et al., 2004).

Baldry et al. (2004) showed that the (u− r) colour distribution at low redshift is well-
modelled by a pair of gaussian functions, one for each colour peak. They also note that the
colour distribution is a strong function of absolute magnitude M , with an evolution that
is approximately linear with respect to M , but with a correction proportional to tanhM .
Given the similar (but less pronounced) bimodality in (g − r) colour, we predict that a
pair of gaussians will provide a good fit to this distribution as well.

1.6 Cosmology

We assume the same cosmology used in the Bolshoi and MultiDark Run 1 (MDR1) sim-
ulations with Ωm = 0.27, ΩΛ = 0.73, Ωb = 0.0469, ns = 0.95, h0 = 0.70, σ8 = 0.82
(Prada et al., 2012).
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Chapter 2

Data

Our study of the colour evolution of cluster satellites requires large samples of both simu-
lated and observational data, presented below in §2.1 and §2.2 respectively.

2.1 Simulations

To obtain a large sample of satellite orbits, we use the output of the MDR1 DM only
simulation (we also consider the output of the Bolshoi simulation as a means to extend the
mass range of our analysis in Appendix A) with 1 Gpch−1 box side length, 20483 particles,
current cosmology (Wilkinson Microwave Anisotropy Probe (WMAP)5/WMAP7), 8.7 ×
109h−1 M⊙ mass resolution and 7 kpc force resolution. The simulation was run from z = 65
to the present; the majority of snapshots are output at even intervals in scale factor a with
some irregular intervals at small a. The resolution in scale factor is of 0.0304 before a ∼ 0.7
(z ∼ 0.43) and doubles to 0.0152 afterwards (corresponding to a time resolution of about
0.210 Gyr at z = 0). This is taken into account in our discussion below. Full details of the
simulation parameters are described in Prada et al. (2012). The simulation snapshots were
processed by the rockstar halo finder (Behroozi et al., 2013b) and the merger tree code
presented in Behroozi et al. (2013c). To produce the data used in this paper, the merger
tree code was slightly modified so that a halo may contain satellite haloes at distances
of up to 2.5 times its virial radius (rvir = r360b) from its centre; the default code finds
satellites within only 1.0 virial radii. This allows us to track satellites out to the largest
apocentric distances which Mamon et al. (2004) (see also Gill et al., 2005; Balogh et al.,
2000; Ludlow et al., 2009) show to be about ∼ 2.5r200c(∼ 2.2r360b) by using host-satellite
linking as a proxy for cluster membership.
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In the following discussion, we will denote full 6D cluster-centric coordinates (r, v).
The position and velocity centre of a halo is determined by averaging the positions and
velocities of the subset of halo particles which minimizes the expected Poisson error in the
coordinates, i.e. the particles occupying the region of highest local density (Behroozi et al.,
2013b, §3.5.1 provides full details on how coordinates are determined by the halo finder).

Projected coordinates will be denoted (R, V ). Projection is done along the arbitrar-
ily chosen third (z-)axis of the simulation box and includes a correction to the veloc-
ities to account for the Hubble flow. With this correction, the simulated velocity dif-
ferences can be directly compared to observation data, where velocity differences will
be measured using a redshift difference. The projected distance between two points is
R12 =

√

(r2,x − r1,x)2 + (r2,y − r1,y)2 and the relative velocity of point 2 with respect to
point 1 is V12 = |(v2,z−v1,z)+H(r2,z−r1,z)|. Note that V ≥ 0; this encodes our assumption
that the distances to the two points are not known precisely, so only the magnitude of their
relative velocity can be determined.

For ease of comparison between satellites of different hosts, all spatial coordinates are
normalized to the virial radius rvir of the host halo, which is defined using the formula of
Bryan & Norman (1998): the radius enclosing a region with an overdensity of 360 times
the background density at z = 0. For readers more accustomed to normalization by r200c,
an approximate conversion at z = 0 is r200c

rvir
∼ 0.73. All velocity coordinates are normalized

to the rms velocity dispersion σ of the host halo, measured in 3D.

2.1.1 Interloper Sample

Due to the lack of precise distances to clusters and their satellites in observation, it is
impossible to impose a cut such as “all galaxies within a given 3D radius of the cluster
center”. Instead, a cut is imposed on the projected radius, with a second cut imposed on the
LoS velocity to remove galaxies that are far removed from the cluster in velocity space (and
therefore most likely far removed in LoS distance as well). This gives a cylindrical volume
in projected position-LoS velocity space (strictly speaking the region has the shape of a
cone with its top sliced off, but is well approximated by a cylinder for distant clusters).
Provided the velocity cut is chosen sufficiently large, this cylinder contains the sphere
centered around the cluster containing the galaxies of interest, and a number of galaxies
outside this sphere, which we term “interlopers”. Some of these interlopers will likely
someday fall into the cluster while others may eventually move off into a neighbouring
structure.

Our sample of interlopers is constructed by selecting all haloes with R
rvir

< 2.5, V
σ3D

< 2.0
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Figure 2.1: Left panel: Velocity dispersion distribution of the clusters in the catalogue of
von der Linden et al. (2007). Right panel: Distribution of halo masses determined using
an empirical relation (see Fig. 2.2) for the same sample of clusters.

and r
rvir

> 2.5, i.e. all haloes within the cylinder described above, but outside a sphere
centered around the cluster. See §3.1.1 and §3.3 for details on the interloper sample and
discussion, respectively.

2.2 Observations

To obtain a large sample of clusters and their satellites we use the cluster catalogue of
von der Linden et al. (2007). This provides the right ascension (RA), declination (Dec),
redshift and velocity dispersion of 625 clusters. The velocity dispersion and halo mass
distributions of the cluster sample are shown in Fig. 2.1. Halo masses were estimated
using an empirical relation derived from our simulation dataset which provides both the
mass and velocity dispersion of each halo; see Fig. 2.2. The redshift distribution of the
clusters is shown in Fig. 2.3.

Our sample of satellites is drawn from the SDSS DR7 (Abazajian et al., 2009) with
the bulge + disk decompositions of Simard et al. (2011). The decomposition is performed
using Galaxy IMage 2D (GIM2D) (Simard, 1998) and fits a pure exponential disk + a
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Figure 2.2: Left panel: Velocity dispersion as a function of virial mass for haloes in the
MDR1 simulation. The data are fit using a power law which is used to estimate the virial
mass of our observed sample of clusters. Right panel: Velocity dispersion as a function of
virial radius for haloes in the MDR1 simulation. Again, a power law is fit to the data,
which is used to estimate the virial radius of our observed sample of clusters. In both
panels, only 1
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Figure 2.3: Redshift distribution of the clusters in the catalogue of von der Linden et al.
(2007).

de Vaucouleurs bulge with Sérsic index nb = 4. The fit is performed simultaneously in
two bands (g and r) by matching the bulge radius, ellipticity and position angle, and the
disk scale length, inclination and position angle in both bands. This criterion decreases
the error in the fits, but also makes them insensitive to colour gradients in the bulge/disk
components. The resulting catalogue provides total magnitudes in the g and r bands,
decompositions in the same bands as well as redshifts for 1,123,718 galaxies. However, we
use only galaxies with spectroscopic data – and thus more reliable redshifts – of which there
are 674,701. These data were supplemented with RA and Dec coordinates from the SDSS
DR7 archive and stellar masses obtained from the latest release1 of the data originally
presented in Kauffmann et al. (2003).

Figs. 2.4–2.6 illustrate, respectively, the total colour, disk colour and bulge colour distri-
butions for a subset2 of the SDSS DR7 galaxies as a function of absolute r-band magnitude
Mr and a measure of local environmental density defined in terms of the distance to the

1http://home.strw.leidenuniv.nl/~jarle/SDSS/index.html
2dN values (see Eq. 2.1) were readily available for the SDSS DR6 (Adelman-McCarthy et al., 2008),

which includes 215,099 galaxies from our DR7 spectroscopic dataset.
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N th nearest neighbour of the galaxy dN (Baldry et al., 2006):

ΣN =
N

πd2N
(2.1)

Galaxies with Σ5 < 0.2 are completely isolated field galaxies, while Σ5 > 6.5 is typical for
a cluster core. Figs. 2.4–2.6 are intended to be easily compared to fig. 1 of Balogh et al.
(2004), using the same Mr and Σ5 binning, but (g − r) instead of (u− r) colour.

In total colour (Fig. 2.4), we note a (sometimes weakly) bimodal distribution with peaks
near (g − r) = 0.4 and (g − r) = 0.7. The distribution is a strong function of environment
for faint galaxies with higher density environments hosting a higher relative abundance
of red galaxies (as compared to blue galaxies). Luminous galaxies are predominantly red
regardless of environment.

The disk colour distribution (Fig. 2.5) are qualitatively similar to the total colours, but
the two colour peaks are slightly broader and closer together, weakening the bimodality.
Edge-on disks are subject to dust-reddening; we verified that this does not significantly
affect the colour distributions by comparing the distributions for low inclination disks
(i < 50◦) and all disks. Bulge colours (Fig. 2.6) again show the same qualitative trends
with environment and luminosity, but more weakly.

We construct our sample of observed satellites as similarly as possible to our sample
of simulated satellites. The virial radius of each cluster is determined from its virial mass
(which is estimated from the velocity dispersion, see Fig. 2.2):

Mvir =
4

3
πr3vir (360Ωmρc) (2.2)

A galaxy is flagged as a satellite candidate of a cluster if it is within 2.5 rvir of the cluster
centre and its LoS velocity offset |∆vLoS| from the cluster is less than 2.0 σ3D. The bright-
est cluster galaxys (BCGs) are included in the satellite population in our analysis. We
note that by construction, the BCGs have coordinates (R, V ) = (0, 0) in their respective
clusters since von der Linden et al. (2007) define the cluster centres in their catalogue as
the location of the BCG. This assumes that the BCG is hosted by the cluster halo (rather
than a satellite halo), and no corresponding orbits would appear in our simulated orbit
catalogues. We note that the BCGs account for less than 2 per cent of our satellite sample
and so we do not expect their presence to impact our conclusions.

The projected radius is determined by first finding the angular separation between the
galaxy and the cluster:

∆θ = |arccos (sin (Decg) sin (Decc) + cos (Decg) cos (Decc) cos (RAg − RAc))| (2.3)
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Figure 2.4: Total (bulge + disk) (g − r) colour distribution as a function of absolute
magnitude Mr (1.0 mag bins) and local density Σ5 (see Eq. 2.1) for SDSS DR6 galaxies.
The y axis displays absolute number counts; each panel is scaled to fill the available space.
The error bars have length

√
N + 2. Galaxies with r-band bulge to total light ratios

(B/T )r < 0.1 and (B/T )r > 0.9 have been omitted. The same Σ5 and Mr binning as
in fig. 1 of Balogh et al. (2004) is used. We note two peaks in colour, one blue near
(g − r) = 0.4 and one red near (g − r) = 0.7. The relative abundance of red galaxies as
compared to blue galaxies increases with increasing local density and galaxy luminosity.
Luminous galaxies are preferentially red, regardless of environment.
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Figure 2.5: As in Fig. 2.4, but for disk colours. There are again two peaks, one red near
(g−r) = 0.65 and one blue, whose position appears to vary as a function of Σ5. The peaks
are typically slightly broader and closer together than in the total colour distribution,
weakening the bimodal character of the distributions.
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Figure 2.6: As in Fig. 2.4, but for bulge colours. Except for the lowest luminosity galaxies,
the bulge colours are dominated by a red peak near (g−r) = 0.8 regardless of environment.
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where the subscripts g and c indicate the RA and Dec of the galaxy and cluster respectively.
Then, given the angular diameter distance dA at the redshift of the cluster assuming our
cosmological parameters (see §1.6), the projected radius of the galaxy is simply:

R

rvir
=

dA∆θ

rvir
(2.4)

The velocity offset is calculated as:

|∆vLoS|
σ3D

=
c|zg − zc|

(1 + zc)
√
3σ1D

(2.5)

where zg is the redshift of the galaxy, zc is the redshift of the cluster and σ1D is the velocity
dispersion of the cluster measured along the LoS. The velocity dispersion is assumed to
be isotropic, giving the simple relation:

σ3D =
√
3σ1D (2.6)

This assumption is verified using our MDR1 data in Fig. 2.7. In most cases, Eq. 2.6 gives
σ3D accurate to withing 15 per cent or better.

This process of associating galaxies to clusters yields a sample of 49,107 satellite candi-
dates, of which we expect about half to be interlopers (see §3.1 and §3.1.1). The distribution
of the number of satellites in each cluster is shown in Fig. 2.8, and the distributions of
satellite candidate stellar masses and halo masses are shown in Fig. 2.9. Halo masses are
estimated using the results of Velander et al. (2013). We use their relation between stel-
lar mass and halo mass (M200, conversion from M200 to Mvir was based on the work of
Bullock et al. (2001)) for ‘blue lenses’ shown in their fig. 10. We make this choice since we
believe the properties of our satellite candidates correspond better to these than the ‘red
lenses’, and we expect that most satellites best modelled as ‘red lenses’ fall in the mass
range where the two relations cross over. In any case, our objective here is only to obtain
a rough estimate of the halo mass of the satellites. The exact relation used is:

Mvir = 100.84 log10 M∗+3.69 (2.7)

The fit parameter uncertainties of Velander et al. (2013) are indicative of systematic
errors in the conversion from M∗ to M200c of about 15 per cent. There is a further con-
tribution to the systematic error in the conversion from M200c to Mvir. This conversion is
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Figure 2.7: The velocity dispersion of each cluster in MDR1 was “measured” along the
three orthogonal axes of the simulation box by computing the standard deviation of the
satellite halo velocities. Contours indicate the ratio of

√
3σz (an approximation of the

velocity dispersion if only one component can be measured, this assumes an isotropic
velocity dispersion) and

√

σ2
x + σ2

y + σ2
z (exactly the velocity dispersion provided σx, σy

and σz are measured accurately) as a function of the square root of the number of cluster
members used to measure the velocity dispersion components

√
Nmembers. The bin size

used to determine contour heights is shown. The points and error bars show the mean and
1σ scatter of the distribution in bins of

√
Nmembers. For clusters with a small number of

members, the scatter is dominated by the shot noise from measuring σx, σy and σz from a
small number of members. As Nmembers → ∞, the remaining scatter is due to the spread
in cluster velocity dispersion anisotropies.
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Figure 2.8: Histogram of the number of satellite galaxy candidates drawn from the
catalogue of Simard et al. (2011) associated to each cluster from the catalogue of
von der Linden et al. (2007). Full details of the process used to associate satellite galaxy
candidates to clusters is given in §2.2.

exact except for the choice of a halo concentration parameter c. The dependence on c is
relatively weak; we expect that this error is much smaller than the error in converting from
stellar to halo mass. There is also a random error in the stellar to halo mass conversion.
Moster et al. (2010) suggests a scatter of 0.15 dex in the conversion from a halo mass to a
stellar mass, constant with halo mass. We estimate the scatter in the reverse conversion by
numerically inverting the functional form of Moster et al. (2010) (using their fit values as
well). The scatter in the M∗ to Mvir conversion is mass dependent but is bounded between
0.08 dex (at low Mvir) and 0.4 dex (at high Mvir).
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Figure 2.9: Left panel: Distribution of satellite galaxy candidate stellar masses. Stel-
lar masses were obtained from the latest release of the data originally presented in
Kauffmann et al. (2003). Right panel: Distribution of satellite galaxy candidate halo
mass estimates. Halo mass was estimated using the relation to stellar mass outlined in
Velander et al. (2013) (see §2.2 for details of the estimation).
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Chapter 3

Results: Orbit Statistics and

Tracking

From the MDR1 simulation dataset presented in §2.1 we create a collection of probability
distribution functions (PDFs) of time since infall for cluster satellites as a function of their
projected phase space coordinates. The process to achieve this is described in §3.1. There
are several systematic effects inherent in this method that need to be understood before
using the PDFs. We will discuss the impact of projecting the data in both the radial and
velocity coordinates in §3.2. In §3.3 we discuss the impact of the interloper sample on our
analysis. In §3.4 we will present the PDFs and discuss some of their features. In §3.5 we
discuss the effects of both host and satellite mass on the distribution of satellites in phase
space. In §3.6 we discuss the impact of numerical resolution effects on our results (see also
Appendix A).

3.1 Method: Orbit Catalogues and Infall Time PDFs

First, the orbital history of a satellite and its host at z = 0 are determined. Then the infall
time of the satellite into that host halo is defined as the earliest time at which the satellite’s
progenitor identifies the z = 0 host’s progenitor as its host. A host-satellite pair may be
identified as soon as the satellite is within 2.5 times the virial radius of the host; though
other criteria must still be met, as outlined in Behroozi et al. (2013c), in practice these are
usually met immediately when the satellite crosses within 2.5rvir. Only the orbital history
with respect to the final (z = 0) host is considered, and in cases where a satellite has a
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Figure 3.1: These two panels provide a measure of the importance of resolution effects in
our analysis; see §3.1 and §3.6 for discussion. Left panel: The mass function of all satellite
haloes in our initial sample (dotted black line) and the mass function of satellite haloes
that have experienced at least one pericentric passage (solid black line), where in both
cases the masses are measured at the time of infall on to their host. The coloured lines
separate the satellites that have experienced a pericentric passage into bins of pericentric
distance, as labelled. The total number of satellites contributing to each mass function
are labelled N . We impose a halo mass cut as indicated by the thick vertical line (Mcut =
1011.9 M⊙), yielding a sample which is as complete as reasonably possible above Mcut. The
relative deficit of haloes with masses . 1013 M⊙amongst those that experience the closest
pericentric passages (blue curve) is due to artificial disruption of haloes in the simulation.
Right panel: Number density as a function of satellite radial position for various mass
ratios µ, where the mass of the satellite is measured at the time of infall. The host haloes
have masses ≥ 1014 M⊙. Satellites with low mass ratios are underabundant toward the
centre of the cluster environment due to artificial disruption of haloes in the simulation.
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hierarchy of hosts, intermediate hosts are ignored and the satellite identifies the largest as
its host; in other words, the present work ignores “group preprocessing”. Hosts are selected
to be “cluster-sized”, which we define as a halo mass > 1014 M⊙. With the MDR1 dataset,
this yields a catalogue of 1, 053, 807 satellite orbits belonging to 35, 838 different hosts.

To ensure a sample complete in satellite mass, and that we are minimally sensitive to
artificial disruption of satellite haloes, we impose a mass cut at Mcut = 1011.9 M⊙, where
the mass is measured at the time of infall. Using the stellar-to-halo mass ratios outlined
in Behroozi et al. (2013a), this corresponds to a cut in stellar mass at ∼ 1010.3 M⊙. The
left panel of Fig. 3.1 shows the mass function (Eq. 1.4) for all satellites, and for satellites
that have experienced at least one pericentric passage in bins of proximity of pericentric
passage. Our mass cut is safely above the mass resolution limit of the simulation. As in
essentially all cosmological simulations, MDR1 haloes experience artifical disruption in high
density environments (Kitzbichler & White, 2008; Klypin et al., 1999). This is the reason
for the underabundance of lower mass satellites that have experienced a close approach to
a cluster centre (blue curve in Fig. 3.1, left panel). Comparing the integrals of these mass
functions, we estimate that less than 20 per cent of haloes with masses above our mass
cut and pericentric distances in the range 0.0 − 0.25rvir have been artificially disrupted.
Most of the artificially disrupted satellites are in the mass range 1011.9 − 1013.1 M⊙. We
estimate that these missing satellites account for less than 4 per cent of the total halo
population above our mass cut. The right panel of Fig. 3.1 shows the number density of
satellite haloes as a function of radial position for bins of satellite mass relative to the host
halo. Observations, along with the assumption that the luminosity of a galaxy hosted by a
halo is correlated to the maximum mass at any time of the halo, constrain the slope of this
power law relation to be between −1.7 and −1.5, regardless of mass ratio (Behroozi et al.,
2013b; Tinker et al., 2012). The slopes shown in Fig 3.1 are somewhat steeper at about
−1.9 for mass ratio µ = 10−0.5 − 100. The reason for this steeper slope is not precisely
known, but the higher resolution Bolshoi simulation exhibits the same slope of −1.9 so we
surmise that it is not due to a resolution effect. The key feature that we wish to highlight
is that the slope (and shape) of this relationship is mass ratio dependent in our dataset,
with satellites that are smaller relative to their host being less abundant (due to resolution
effects) closer to the centre of the host. The underabundances of satellites highlighted by
each panel of Fig. 3.1 are due to the same population of satellites; those which have orbited
to within . 0.25rvir of their host and have a mass . 1013.1 M⊙. See §3.6 for a discussion
of the impact of these missing satellites on our results.

We impose one final cut, removing satellites that existed for less than 3 simulation
snapshots before falling into a cluster. This prevents haloes near the mass resolution limit
of the simulation from appearing suddenly inside a cluster and being assigned meaningless
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infall times. The remaining 466,556 satellites were binned in 100 projected position bins
in 0.0 ≤ R/rvir ≤ 2.5 and 100 projected velocity bins in 0.0 ≤ V/σ3D ≤ 2.0. The set of
infall times in each bin was used to create a PDF of infall times for each bin. Separate
collections of PDFs were created for different bins of satellite mass, we elaborate on these
bins in §4.3.

3.1.1 Interlopers

Our interloper sample, initially containing 1,094,552 haloes, is cut with the same lower
mass limit as our satellite sample, leaving 444,182 haloes. These are binned in the same
way as the satellites and added to the PDFs, tagged with a nonsensical infall time to
distinguish their contribution from that of satellite haloes.

3.2 Projection

3.2.1 Radial Projection

While a simulation provides accurate values for all six phase space coordinates of an object,
a typical astronomical observation can only measure three. The RA and Dec give two
spatial coordinates (the distance is unknown), while comparing the spectra of two objects
can give the difference in velocity between them, but only for motion in a direction along the
LoS. Since we ultimately wish to infer properties of observed objects from their coordinates,
we must restrict our knowledge of simulated objects to these same coordinates. This can be
achieved by ignoring one of the spatial coordinates of the simulation box – in our case, the
third – and considering only the velocity coordinate corresponding to the ignored spatial
coordinate. Additionally, we include a correction to the projected velocity to account for
the Hubble flow. This transformation applied to the spatial coordinates of a point x and
its velocity u relative to a reference point y and its velocity w can be expressed:

r = (x− y) = (x1 − y1, x2 − y2, x3 − y3)

⇒ R = (x1 − y1, x2 − y2)
(3.1)

v = (u−w) = (u1 − w1, u2 − w2, u3 − w3)

⇒ V = (|(u3 − w3) +H(x3 − y3)|)
(3.2)

We predict the effect of projection on the radial coordinate by considering a random
uniform distribution of points on a spherical shell. For this distribution the relation-
ship between the actual (r) and projected (R) radial coordinates is characterized by
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Figure 3.2: Left panel: Abundance of satellites in bins of cluster infall time, defined as
first inward crossing of 2.5 rvir, and radial distance from cluster centre at t = 0 Gyr. In
the interval t = 0 to t ∼ 3.5 Gyr the ‘infalling’ population is visible, composed of satellites
that have not yet experienced a pericentre passage. From t ∼ 3.5 Gyr to t ∼ 6 Gyr
the ‘backsplash’ population is visible, composed of satellites that have passed pericentre
once and are approaching apocentre (t ∼ 6 Gyr). The ‘virialized’ population (t > 6
Gyr) are on a second or subsequent orbit. Gray horizontal lines illustrate the times of
simulation snapshots. Right panel: same as left panel, but using radial distance from cluster
centre projected along one axis of the simulation box (simulating coordinates accessible in
observations). This widens the distribution of radii of satellites at a given infall time, but
the same populations as in the left panel are visible.

〈R
r
〉 = π

4
±
√

2
3
− π2

16
∼ 0.79± 0.22 (1σ scatter). In our sample of satellite galaxies, we

find that 〈R
r
〉 agrees with this prediction to within 1 per cent, both in the mean and in

the scatter. The projected radial coordinate tracks the 3D radial coordinate more closely
and more consistently at larger projected radii; at R ∼ rvir, 〈Rr 〉 ∼ 0.83 ± 0.17 while at
R ∼ 0.1rvir, 〈Rr 〉 ∼ 0.51±0.31. The observed velocity coordinate does not have as straight-
forward a relationship with the actual quantity of interest – the radial component of the
velocity difference between two points – but the information about two components is lost
instead of one, so we expect a much larger typical difference between projected velocity
and true velocity. We also lose the sign of the one remaining component of velocity since,
without precise knowledge of the distances to the two points, we cannot know whether the
distance between them is increasing or decreasing.
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The left panel of Fig. 3.2 shows the distribution of satellite infall times1 as a function
of radial distance from the host centre measured at z = 0 before projection. Satellites that
have recent infall times (near the top of the diagram) are necessarily concentrated near
the edge of our definition of the cluster at 2.5 rvir; they have not had enough time to move
anywhere else. A typical crossing time for our sample of clusters is about 6-8 Gyr, so most
satellites that fell in 3-4 Gyr ago are near the centre of the host. Note that this seemingly
long crossing time is due to our definition of the edge of the cluster at 2.5 rvir; the typical
time to cross from rvir to pericentre and back to rvir is about 2 Gyr. The satellite also
spends a significant amount of time outside the virial radius after this initial crossing;
it takes a further ∼1 Gyr for a typical satellite to reach apocentre after making its first
outbound crossing of rvir.

There is a spread in the time taken to reach pericentre and the radii of the pericen-
tres caused by the variety of possible orbits and details of the host potentials. The first
apocentre after infall typically occurs after about 6 Gyr; the population of objects between
first pericentre and apocentre is termed ‘backsplash’. Satellites with infall times earlier
than ∼ 7 Gyr have less distinct features in their distribution due to the increasing impact
of variations in orbital history, but the majority are confined within ∼ 1 rvir; we call this
population ‘virialized’.

The right panel of Fig. 3.2 shows the effect of projection in the radial coordinates on
the same distribution as in the left panel. Features are shifted somewhat to lower radii
(consistently with our expectation of 〈R

r
〉 = π

4
) and broadened by the scatter about this

mean deformation. All the populations and features discussed above are still identifiable.
One notable omission from this diagram is any foreground/background objects, or interlop-
ers, which are common in observational samples, that could be confused with the satellite
populations. These objects are further discussed in §3.3.

There is one other important effect to consider when interpreting Fig. 3.2 (and others
involving infall times). As a host halo accretes mass, its virial radius grows (slowly, except
in the case of major mergers). Because of this, an orbiting satellite may appear to move
further in coordinates scaled to rvir than it otherwise would as the coordinates grow around
it. This does not have a large impact on the positions, but contributes some of the scatter
in the radial coordinate. One might consider choosing some radius that is constant with
time to scale each halo, but other choices, such as the virial radius at the last snapshot,
also introduce similar effects.

1The infall times produced by the method of §3.1 occur at discrete times – those of the simulation
snapshots. For the purposes of visualization only, some uniform random scatter was added to the times,
redistributing each discrete time td over the interval

[

1

2
(td−1 + td),

1

2
(td + td+1)

]

.
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3.2.2 Velocity Projection

Next, we consider the effect of projection on the velocity coordinates. The upper left
panel of Fig. 3.3 shows the distribution of satellite haloes in phase space at z = 0. A
typical halo would, given enough time, progress from large radii and low velocities down
to low radii and high negative velocities, then switch to high positive velocity as it passes
pericentre. From there it follows a series of progressively shrinking concentric semicircles
or chevrons, switching from negative to positive velocity at each pericentric passage (for
a more in depth theoretical background, see Bertschinger, 1985, especially fig. 6 therein).
This normal progression is well represented by the distribution of our halo sample, however
the individual orbital ‘shells’ are not visible since they overlap, and we only expect 1-2 shells
given the orbital timescales and ages of these systems. Also, close encounters redistribute
some haloes off this idealized track.

Based on this expected movement through phase space in time, satellite haloes with
different infall times should occupy different regions of phase space. This is shown in
Fig. 3.3, where the phase space distribution of haloes is plotted for a variety of bins in
infall time. Fig. 3.4 shows the same binned distributions, but in projected coordinates,
simultaneously showing the effects of both radial and velocity projections, but emphasizing
the latter. Much of the structure visible in Fig. 3.3 is lost in projection, but haloes with
different infall times still occupy different regions of phase space.

3.3 Interloper Projected Phase Space Distribution

In addition to the actual cluster satellite haloes and the galaxies they host, an observed
sample of objects near a cluster will inevitably include interlopers. The selection of our
simulated interloper sample is described in §§2.1.1, 3.1.1. The number of interlopers in-
creases with projected radius, primarily because there is more volume at larger projected
radii. It also increases with decreasing LoS velocity; haloes that will eventually fall into
the cluster contribute to this distribution at low LoS velocities. The left panel of Fig. 3.5
shows the distribution of our interloper sample in projected phase space. The right panel
shows the combination of the satellite and interloper samples.

Both the interloper and the satellite distributions occupy essentially the entire projected
phase space plane, but peak in distinct regions. Fig. 3.6 shows the interloper fraction as a
function of projected phase space position. The upper right region of the phase space plane
is dominated by interlopers while the lower left region contains mostly cluster satellites.
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Figure 3.3: The upper left panel shows the phase space distribution of satellite haloes (no
projection). The infalling population of haloes is particularly distinct, forming the long
dark bar with v < 0. The backsplash population forms the upper and lower edges of
the rest of the main distribution, while the virialized population fills in the centre. The
other panels correspond to bins by satellite infall time, as labelled (most bins are 1 Gyr).
Each panel shows the z = 0 distribution of satellites in phase space. Different satellite
populations occupy distinct regions of phase space; compare for instance the upper right
panel showing mostly infalling satellites, the centre right panel showing mostly backsplash
satellites and the lower right panel showing mostly virialized satellites. Each bin is also
labelled with the number of satellites N contained in the bin.
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Figure 3.4: As in Fig. 3.3, but using radial distance from cluster centre projected along
one axis of the simulation box and velocity projected along the same axis (again simu-
lating coordinates of an observed system). Much of the structure visible in Fig. 3.3 is
lost in projection, but the use of LoS velocity data allows better separation of different
satellite populations than using the radial coordinate alone. The dashed gray line marks
V
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= −4
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+ 2; see §3.4.
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Figure 3.5: Left panel: Phase space distribution of haloes outside a sphere of radius 2.5rvir
but with projected coordinates R < 2.5rvir and V < 2.0σ3D. These “interloper” haloes
contaminate the cluster satellite halo population. Right panel: Combined phase space
distribution of cluster satellite haloes and interloper haloes.
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Figure 3.6: Interloper fraction as a function of projected phase space position. Blue regions
are dominated by interlopers, red regions by satellites, and white regions contain an even
mixture of both populations. Contours show the number of haloes in each bin. The gray
dashed line identifies the same region as in Fig. 3.4. The population of haloes with large
R and large V is dominated by interlopers, while the populations with low R and low V
is dominated by satellites.
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3.4 Infall Time PDFs

Since our ultimate goal is to model quenching, perhaps the most directly useful question we
can ask of our dataset is, given a position in projected phase space, what is the distribution
of possible infall times (or another parameter of interest), and what is the likelihood of
each? This question is easily answered in a statistical manner by sampling all satellites in a
small region of phase space and binning them by infall time. The result is shown in Fig. 3.7
for a selection of points in phase space, varying both the radial coordinate (left-right across
the panels) and the velocity coordinate (up-down). We focus here on the trends with the
velocity coordinate. The first trend we note is that at a given radius, satellites with higher
vLoS typically have slightly more recent infall times than their low vLoS counterparts. This
is because a satellite with high vLoS is more likely to have a high total speed and can
penetrate deeper into the host potential in a given amount of time than a satellite with
low speed.

In some cases, the velocity coordinate allows us to discriminate between different satel-
lite populations. Consider the rightmost panels (R = 1.5) of Fig. 3.7. One peak in the
distribution of infall times is clearly visible at all values of vLoS, at t ≈ 2 Gyr; it is made up
of infalling satellites. A second peak at t ≈ 6 Gyr is made up of backsplash satellites, and
is only present for low values of vLoS. The backsplash galaxies have lower kinetic energy
relative to the host potential than recent infalls due to a combination of mass accretion
by the host (increasing σ, therefore causing an apparent slowing of haloes) and dynamical
friction.

Another visualization of the PDFs is shown in Fig. 3.8. The velocity distribution of
satellites with various infall times around a few fixed radii are plotted. Populations with
more recent infall times have a broader distribution of velocities. They are also generally
dominant over populations with earlier infall times at larger projected radii.

Given a sufficiently large sample of observed galaxies, the PDFs we have created will
allow us to statistically assign an infall time to each one using all the available dynamical
information and a meaningful uncertainty in our assignment.

As a test of the reliability of our PDFs, we use them to estimate the infall time of each
simulated satellite halo in our sample. This estimate is then compared to the actual infall
time of the satellite, which we know from tracking its orbit. This is roughly equivalent to
measuring the width of the PDF corresponding to each region of phase space. Interlopers
are not included in this analysis. The distribution of ∆t = tinfall(actual)− tinfall(estimated)
is plotted in Fig. 3.9. A ∆t of 0 represents a correct guess, so a stronger peak about
∆t = 0 represents a higher rate of success. As a quantitative measure of the strength of
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Figure 3.7: PDFs of infall times for a selection of regions (R/rvir, V/σ3D) in projected phase
space. Each region is sampled in a small area around the labelled point. The number of
satellites in each region is labelled N , giving a measure of the statistics of each PDF. The
horizontal red line provides a measure of the number of interlopers in each region of phase
space. The axes have no meaning relating to the interlopers, rather the height of the line
is fixed so that the ratio of the integrals of the red and blue curves is proportional to the
ratio of interlopers to satellites in each region.
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the peak, we calculate the standard deviation of the distribution. By using our PDFs based
on knowledge of the (R, V ) coordinates of each satellite, we assign the infall time correctly
to within ±2.58 Gyr in 68 per cent of cases. For comparison, we also plot the distribution
of ∆t obtained if only the position coordinate R of the haloes is known, accurate to within
±2.64 Gyr in 68 per cent of cases, and if none of the coordinates are known; in this case,
we simply draw values from the distribution of infall times of our entire sample at random,
and find we are accurate within ±3.10 Gyr in 68 per cent of cases. We also compare to
the case where 3D radius r and the radial velocity vr of the satellite are known (these are
typically not observable quantities in extragalactic systems). In this case the prediction
is understandably better than when projected coordinates are used, with an accuracy of
±1.94 Gyr in 68 per cent of cases. Finally, we plot a curve showing the distribution of ∆t
for a particular subsample of satellites chosen by eye which have V

σ3D
> −4

3
R
rvir

+ 2. This
subsample is designed to retain primarily infalling satellites (see Fig. 3.4), and in this case
the assignment of infall times is even more reliable. This demonstrates that if a particular
population of satellites is of interest, it is often possible to choose a region of phase space
that maximises the likelihood of correctly assigning tinfall. For this example, we correctly
assign tinfall within ±2.48 Gyr in 68 per cent of cases. In practice, this makes it possible to
increase the purity of an observational sample of galaxies at the expense of completeness
of the sample by limiting the region of phase space from which the sample is drawn.

Fig. 3.10 shows the accuracy of the assignment of tinfall at the 68 per cent confidence
level for bins in (R, V ) space. The PDFs give the most reliable results in those regions
with both good accuracy and a large population of satellites. In the outskirts of clusters,
an accuracy ∆t of about 3 Gyr is sufficient to robustly separate infalling and backsplash
satellites.

We conclude that using all observable coordinates of a satellite (R, V ) offers an improve-
ment in assigning tinfall correctly over using only the position coordinate R comparable to,
but somewhat less than, the improvement seen when using the position coordinate R rather
than no knowledge of satellite coordinates at all. Careful selection of the region of phase
space to be sampled can, in many cases, further increase the reliability in estimating tinfall.

The above estimations of infall time assume that the cluster satellite population can be
separated from the interloper population before any predictions are made. In practice, in
regions dominated by interlopers, it is essentially impossible to pick out satellites based on
their phase space coordinates alone (though a selection on some other physical property
of the galaxy hosted by the satellite halo may be of use). In regions with a more even
mixture of satellites and interlopers (suppose there is an interloper fraction fi), an infall
time prediction has the caveat that either the infall time of the halo is drawn from the
distribution defined by the PDF at that location in phase space with probability (1−fi), or
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Figure 3.9: The distribution of ∆t, a measure of the rate of success of using our PDFs
to estimate the infall time tinfall of satellite haloes in our sample, is plotted with a thick
red solid line. ∆t = 0 represents a successful estimation, while increasing |∆t| represents
increasing an increasing discrepancy with the correct value. A sharp peak at ∆t = 0
therefore represents a high rate of success. The black dotted line shows the distribution
if we assume no knowledge of the LoS velocity of the satellites, while the gray dotted line
shows the distribution if we assume no knowledge whatsoever of the coordinates of the
satellites. Each additional coordinate used increases the reliability of the predictions. For
comparison, we also show the distribution for a scenario where both the 3D radius r and
the radial velocity vr are known (green dotted line). The thin solid blue curve shows the
distribution of ∆t for a subsample of satellites selected to study a particular population
of satellites (see text for full details). This shows an example of restricting the region
of phase space considered to increase the reliability in estimating tinfall. We quantify the
degree of success in estimating tinfall by the sharpness of the peak in the distribution of
∆t, measured by its standard deviation. The standard deviations for the five curves are
2.58 Gyr, 2.64 Gyr, 3.10 Gyr, 2.48 Gyr, 1.94 Gyr (in the same order as labels in the legend).
The number satellites used to test the PDFs is labelled N .
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Figure 3.10: The distribution of ∆t at the 68 per cent confidence level in the (R, V ) plane;
our PDFs will be most accurate when applied to satellites that occupy the reddest (darkest)
regions of the space. Use of the PDFs also requires a reasonable sample size in the region
of interest; contours (0.5 dex intervals) illustrate the number of satellites per cell. We find
that the PDFs become too sparse for reliable use in cells containing less than a few hundred
satellites. The gray dashed line identifies the same region as in Fig. 3.4.
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it is an interloper with probability fi. This information is still useful, however, as we expect
the interloper population to have properties generally similar to recent infalls, and it is no
surprise that these two populations overlap in their projected phase space distributions as
we have only separated them by a line drawn at an arbitrary radius. The interlopers are also
not especially problematic for the virialized population since these satellites preferentially
lie in the region of projected phase space with the lowest interloper density. The backsplash
population, however, overlaps substantially either with the virialized population or with
the interlopers depending on which region of projected phase space is considered. This
makes it the most difficult to separate out which is unfortunate since it is one of the
most interesting populations in the context of star formation quenching by the cluster
environment.

3.5 Mass Trends

While haloes of different masses are expected to be self-similar in most ways, we still find
some trends with both host halo mass and satellite halo mass. We study these trends by
separating the haloes of interest – either hosts or satellites – crudely into a ‘high mass’ and
a ‘low mass’ bin, then compare the distribution of satellites in phase space and infall time
for the two bins.

Fig. 3.11 shows a comparison of satellites around high- and low-mass hosts in infall
time vs. radial position space (left panel), and in phase space (right panel). Low mass
hosts are defined to have 1014 M⊙ < M < 1014.5 M⊙while high mass hosts are in the
range 1014.5 M⊙ < M < 1015 M⊙. The population of satellites around each type of
host is normalized, then the two are subtracted in each infall time - radial distance bin
and compared to the fiducial abundance of satellites in that bin. Cells with a reddish
colouration are preferentially occupied by satellites around high mass hosts, while cells
with a bluish colouration are preferentially occupied by satellites around low mass hosts.

In the infalling population of satellites (t < 4 Gyr in Fig. 3.11, left panel) the satellites
of high mass hosts appear to fall into their host somewhat faster than the satellites of low
mass hosts; at a given time since infall, a satellite of a low mass host has a larger typical
radial distance than a satellite of a low mass host. We propose two possible explanations for
this effect. First, satellites of high mass hosts tend to have more radial orbits than satellites
of low mass hosts (Wetzel, 2011), causing them to move radially inward more rapidly on
average. Alternately, because the hosts are continually accreting mass, their virial radius
gradually increases. Hosts with higher masses have higher present-day accretion rates; this
is visible in Fig. 3.11 (right panel) where the region of phase space occupied by infalling
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Figure 3.11: Relative abundance of satellites in the space of infall times vs. radial po-
sitions (left panel) and phase space (right panel), comparing satellites around low mass
(1014 − 1014.5 M⊙) hosts and high mass (1014.5 − 1015 M⊙) hosts. The two populations
are normalized, subtracted in each bin, then compared to the fiducial abundance of satel-
lites in that bin (arbitrarily chosen to be the population with low mass hosts). Only bins
containing at least 100 satellites are shown.

satellites shows an excess of satellites around higher mass haloes (see also Wechsler et al.,
2002, fig. 3 therein especially). Their satellites therefore appear to move inward slightly
faster than those of low mass hosts in this coordinate system. These two explanations
could be considered an argument for a different normalization of the radial coordinate,
however other choices (e.g. the virial radius of the host at the infall time of each satellite)
still introduce similar effects, and the present virial radius of the host has the advantage
of being more closely related to observable quantities. A more practical approach is to
compute PDFs for narrow host mass bins (∼ 0.5 dex) and use whichever is applicable to
an observed system of interest; our sample contains enough satellites to make this feasible.

We also consider trends with satellite mass. Because satellite mass typically decreases
with increasing time spent in a cluster environment, we use the satellite mass at time of
infall (first crossing of 2.5 rvir) as a characteristic mass for this analysis. Fig. 3.12 shows
that lower mass satellites experience backsplashes to larger radii than high mass satellites.
This is because the slowing due to dynamical friction is proportional to the mass of the
satellite, so that higher mass satellites lose a larger fraction of their kinetic energy during
a passage through a cluster (see, for instance, Tormen et al., 1998). To account for this
trend with satellite mass, separate PDFs can be produced for relatively narrow bins in
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Figure 3.12: Relative abundance of satellites in the space of infall times vs. radial positions
comparing low mass (1011.9 − 1012.2 M⊙) and high mass (1012.2 − 1012.8h−1 M⊙) satellites.
The two populations are normalized, subtracted in each bin, then compared to the fiducial
abundance of satellites in that bin (arbitrarily chosen to be the high mass population).
Only bins containing at least 100 satellites are shown. High mass satellites are slowed
more than low mass satellites by dynamical friction and mass accretion by their host, and
therefore have lower typical backsplash distances than their low mass counterparts.

satellite mass.

Care must be taken when using our method to interpret the distribution of galaxies in a
cluster. Baryons (especially the stellar component) are typically more tightly bound than
their associated DM halo, and should therefore outlive the halo in the cluster environment.
This restricts the satellites, as traced by galaxies, that can be studied using our method
to those which we expect to have a surviving DM halo. With the MDR1 dataset, this
corresponds to galaxies with associated DM halo masses of ∼ 1011.9 M⊙or greater. Smaller
satellites may still be studied by using higher resolution simulations (e.g. the Bolshoi sim-
ulation of Klypin et al. (2011), which has identical parameters to MDR1 but with higher
resolution and a smaller box size, see Appendix A). Low mass satellites are much more
abundant, so the smaller volume of a higher resolution simulation should not impact our
ability to obtain a large sample, except perhaps for low mass satellites around very large
hosts (of which there may only be a few in a simulation such as Bolshoi).
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3.6 Numerical Resolution Effects

As shown in section 3.1, some haloes which experience a close approach to the centre of a
larger halo experience artificial disruption. We estimate that any given bin in our PDFs
is less than 20 per cent incomplete, and that our sample of satellites as a whole is less
than 4 per cent incomplete down to 1011.9 M⊙. The effect on the predictive power of our
method was investigated by generating a test catalogue of orbits with extra entries added to
compensate for artificially disrupted haloes. The number of artificially disrupted satellites
as a function of satellite mass is evident from the mass functions of satellites binned by
pericentric distance (Fig. 3.1 left panel). Randomly selected undisrupted satellites with
masses and trajectories matching those expected for the artificially disrupted population
were duplicated to create the test catalogue. This revealed that the effect of artificial
disruption on the distributions of ∆t (such as those shown in Fig. 3.9) is very small,
causing changes on the order of a few tenths of a per cent.

Our initial interest for applications of our method is to large satellites (halo masses
& 1012 M⊙) around hosts with halo masses & 1014 M⊙, which motivated our choice of the
MDR1 simulation as a starting point. Applying our method to smaller satellites of smaller
hosts is simply a matter of choosing an appropriate simulation; our method is easily applied
to any simulation that can be processed by the rockstar code. The Bolshoi simulation is
of particular interest since it is identical to MDR1 in all respects save resolution and could
therefore be used in conjunction with MDR1 to extend the range of our method to lower
mass ranges while maintaining good statistics at the high mass end. At present we have
only preliminary results from the Bolshoi output; these are presented in Appendix A.
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Chapter 4

Results: Modelling Colour

Distributions

We are now armed with knowledge of the orbital history of satellites, parameterized by
the time since their infall into their host cluster, in the form of PDFs. Next, we use this
information to extract the time evolution of the colour distribution of galaxies in clusters
in a large observed sample. We hope to eventually relate this colour evolution to the SFH
of the galaxies, and then back to the mechanism(s) which governed the SFH.

First, we ensure that the projected phase space distribution of our observed sample
corresponds to that of our simulation dataset, i.e. that we are comparing “apples to apples”,
in §4.1. §4.2 presents the results of the analysis of a very simple toy model that was used
to guide the formulation of the method presented in §4.3. This method simultaneously
fits a model for the colour distribution to the observed data in a sequence of bins of infall
time, effectively deconvolving the colour distribution and the infall time distribution of the
satellites. This method is still being tested and tuned, but in §4.2, we present a second,
greatly simplified (at the cost of accuracy) method to explore the evolution of the colour
distribution, and the results of this rough estimation.

4.1 Compatibility of Observed and Simulated Data

Before applying our infall time PDFs to the analysis of our observed sample of cluster
satellites (recall §2.2 describes the dataset), it is important to verify that our PDFs are in
fact applicable to this dataset. Our assumptions that there is a one-to-one correspondence
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Figure 4.1: Phase space distribution of our sample of observed satellite galaxies, expected
to be comparable to the right panel of Fig. 3.5.

between haloes and satellite galaxies and that galaxies follow exactly the same trajectories
as their associated haloes could lead to a mismatch between the projected phase space dis-
tribution of satellite galaxies and haloes if they are invalid (for instance, if there are “dark
haloes” which host no galaxy). Fig 4.1 shows the projected phase space distribution of our
observed sample of cluster satellite galaxy candidates (including an interloper population).
Encouragingly it appears qualitatively similar to the projected phase space distribution of
the sum of our simulated satellite and interloper populations (Fig. 3.5, right panel) with a
different normalization. We compare the two distributions more carefully in Fig. 4.2. The
two distributions are matched in normalization and compared using the simulated distribu-
tion as the fiducial value. In most of the projected phase space plane the two distributions
match to within 5 per cent or less. The exception is at low projected radius and low LoS
velocity where there is an excess in the observed galaxy sample. The magnitude of the
excess is consistent with the amount of artificial halo destruction expected in the central
regions of simulated clusters. There may also be some galaxies missing in the observed
sample in this region due to fibre collisions during the observing process. Finally, this
region includes the observed BCGs, for which we do not expect a corresponding halo in
our simulated orbit catalogue since BCGs are assumed to be hosted by the cluster halo.
Overall, we deem the match sufficiently close to justify the application of our infall time
PDFs to our observed sample of galaxies.
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Figure 4.2: Fractional excess of observed galaxies relative to amount expected from sim-
ulation halo counts as a function of phase space position. Nexpected is computed by re-
normalizing the phase space distribution of simulation haloes so that it matches the nor-
malization of the observed sample. Most regions are limited to variations of a few per
cent; the excess of observed satellites at low R and low V is consistent with the amount of
artificial disruption of simulation haloes near the centre of clusters discussed in §3.1.

4.2 Comparison of Pre- and Post-Pericentre Satellites

To begin examining the star forming properties of satellite galaxies, we adopt a very crude
model where some change is triggered in a satellite galaxy when it passes pericentre and
is reflected in the colour of the galaxy. This choice is only vaguely physically motivated
in the sense that pericentre is when satellites are exposed to the highest local densities,
relative velocities and tidal fields. It will suffice for some exploratory analysis.

Before examining the distributions of galaxy colours as a function of pericentric passage,
we familiarize ourselves with the colour distribution as a function of position in the (R, V )
plane. Fig. 4.3 shows the total colour distributions for a selection of broad regions in (R, V )
space, and Fig. 4.4 shows the same for disk colours. Galaxies with small projected radii
and low LoS velocities, which we expect to have the oldest infall times, have more red
galaxies and less blue galaxies than the cluster average, while galaxies which we expect to
be infalling or interlopers have an excess of blue galaxies and a deficit of red galaxies.

We consider a quantity easily derived from our infall time PDFs: the probability ppp that
a satellite (or an interloper, though these have by definition a probability of 0) has passed
pericentre. Here, we obtain this by integrating the PDFs described above from an infall
time of ∼ 4 Gyr (the typical time taken to reach pericentre after infall) to ∼ 14 Gyr. The
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Figure 4.3: Galaxy (g − r) colour distribution for nine regions in projected phase space.
The y axis shows absolute number counts and is scaled to fill the available space in each
panel. The error bars have length

√
N . The dotted line is meant to serve as a reference

curve and shows the best-fit double gaussian function to the colour distribution for all
galaxies in 0 < R/rvir < 2.5 and 0 < VLoS/σ3D < 2. Galaxies with low R and V have an
excess of red galaxies and a deficit of blue galaxies as compared to the cluster mean while
the reverse is true for regions we expect to be dominated by infalling or interloper galaxies.
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Figure 4.4: As in Fig. 4.3, but for disk colours.

55



0.0 0.5 1.0 1.5 2.0 2.5
R/rvir

0.0

0.5

1.0

1.5

2.0

V
L
oS
/
σ
3D

p=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Figure 4.5: Probability that a satellite halo has experienced a pericentric passage as a
function of phase space position. Points with very low probabilities (p < 0.05, i.e. the
interloper population in the upper right region of the phase space plane) are omitted.
Each probability bin is fit by minimizing the square of the perpendicular offsets of points
from the fit line. These fits allow crude selections; for instance, choosing all objects with
phase space coordinates left of the green line (p=0.5) will give a sample of objects which
have experienced a pericentric passage with at least 50 per cent certainty. Table 4.1 gives
the fit parameters for each line.

probabilities could be calculated more precisely by constructing new PDFs that explicitly
encode the time of pericentric passage, but again we are focussing on a rough first pass
over the data for the moment. ppp as a function of projected phase space position is plotted
in Fig. 4.5. The strongest trend is the increase of ppp with decreasing R, but satellites with
higher VLoS at a fixed radius also have a lower ppp. The probabilities are sorted into bins
of width 0.1. We perform a linear fit on each bin (fit parameters are given in Table 4.1),
allowing a crude selection of, for instance, “all satellites with a ppp > 0.7” by choosing only
satellites below the appropriate line.

As our trigger time for a change in galaxy colour in this simple model is pericentre, we
construct two samples of galaxies. One is comprised of all galaxies with a low probability of
having experienced a pericentric passage (ppp < 0.2 while the other is comprised of galaxies
which have most likely experienced a pericentric passage (ppp > 0.8). Fig. 4.6 shows the
colour distribution for all galaxies (black curve) and for our sample of high and low ppp
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Table 4.1: Fit parameters for the lines shown in Fig. 4.5, and r2 value for each fit. The

function fit is of the form
(

VLoS

σ3D

)

= a
(

R
rvir

)

+ b

p a b r2

0.1 −1.18 2.23 0.969
0.2 −1.29 2.09 0.982
0.3 −1.41 2.01 0.983
0.4 −1.51 1.90 0.981
0.5 −1.67 1.77 0.977
0.6 −1.86 1.57 0.965
0.7 −2.94 1.43 0.905
0.8 −6.21 1.38 0.916

galaxies. The distribution is reasonably well fit by two gaussians in all cases. The two
gaussians have equal normalizations, and the total normalization is fixed by the size of
the sample. The distribution has a sharp peak at the red end which appears to increase
in amplitude with pericentric passage but is nonetheless prominent in the pre-pericentre
sample. We speculate that this peak is made up of a combination of galaxies quenched by
the cluster environment, “group pre-processed” galaxies which have already been reddened
by a group environment and “mass quenched” galaxies where star formation has been cut
off by an internal mechanism. There is also a much broader blue peak (or perhaps “blue
hump” is a better term). Our fits suggest that the blue hump reddens (shift in the mean)
and appears to decrease in amplitude as one goes from galaxies which have not passed
pericentre to those that have. For this plot (and Figs. 4.7-4.8) we have made the simple
choice that the two peaks are constrained to have equal numbers of galaxies (there was no
a priori reason for this choice, but it seems to provide reasonable fits). The amplitudes of
the peaks are fixed by the other parameters. For instance, the increase in amplitude in the
red peak is caused by a slight narrowing of the peak and an increasing contribution from
the tail of the blue hump as it reddens.

Fig. 4.7 is similar to Fig. 4.6, but shows the colour distribution of the bulge component
of the galaxies. This time we find only a strong red peak; the second gaussian has nearly
the same mean as the first but is much broader, effectively just increasing the amplitude of
the tails of the distribution. There is perhaps a slight reddening after pericentric passage.
Qualitatively, this is as we might expect. Galactic bulges are typically not expected to host
active star formation, leading to predominantly red colours; they are already quenched.

Fig. 4.8 is again similar to the previous two, but shows the colour distribution of the

57



disk component. Similarly to the total colour distribution, we see a red peak and a blue
hump. According to our gaussian fit parameters, the red peak is again approximately fixed
in mean and width (though with a slight narrowing with higher ppp); much of the apparent
change is again due to the changing contribution from the tail of the blue hump. The blue
hump appears to redden with increasing ppp and changes only very slightly in width. The
red and blue distributions are overlapping substantially. It is likely that they would be
better separated in (u− r) colour, but the bulge-disk decomposition data of Simard et al.
(2011) is limited to (g − r) colour. We speculate that this is because the u-band is noisier
than the g-band, making reliable decomposition more difficult.

Fig. 4.9 compares the r-band bulge-to-total light ratio of high and low ppp galaxies. We
do not note any obvious trend with ppp, except that the number of bulgeless galaxies might
decrease after pericentric passage. We are uncertain as to whether this is a real effect
or whether these bulgeless galaxies are artifacts of the decomposition process. There is
perhaps a very slight trend toward higher (B/T )r after pericentric passage (in the bottom
panel, after ignoring the first bin, the red curve has a very slight positive slope and the
blue curve has a very slight negative slope), but the magnitude of the effect is on the same
order as the scatter in the distribution.

4.3 Method: Colour Distribution Evolution Fitting

Our observed sample is first cut to match the domain of applicability of our PDFs. We
discard any galaxies with an estimated halo mass of less than 1011.9 M⊙, and any with
(g − r) colours outside the main distribution of colours, specifically those with colours
outside the interval [0.0, 1.5]. We also split the sample into three consecutive bins of halo
mass with edges at 1011.9, 1012.3, 1012.6 and 1015.0 M⊙ so that we may investigate a possible
mass dependence of the colour distribution evolution. The bins were selected to have a
similar number of galaxies in each bin. These are the same mass bins used when creating
the PDFs described in §3.1. We focus on the colour of the disk, and so we impose one final
cut, removing galaxies with an r-band bulge to total light ratio

(

B
T

)

r
of greater than 0.9

(i.e. systems with little or no disk component). This gives us a sample of 8,143 disks in
our lowest mass bin, 10,134 in our middle bin and 12,461 in our highest mass bin.

The (g − r) colour distribution of our sample of cluster satellites is bimodal, both in
total colour and disk colour, as expected. We model the distribution using two gaussian
curves. Each gaussian has two parameters, a mean and a standard deviation, which we
denote µb, σb, µr and σr with subscripts denoting the ‘red’ and ‘blue’ peaks. We also
allow the relative normalization of the gaussians to vary using a parameter for the ‘blue
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Figure 4.6: Total (bulge + disk) (g− r) colour distribution of cluster satellites. Top panel:

The absolute distribution for all satellites (black histogram), and the distribution for satel-
lites with a probability of having experienced a pericentric passage of 20 per cent or less
(blue histogram) and 80 per cent or more (red histogram). The distributions are normal-
ized so that they all have the same integral for easier comparison. The histograms were fit
with two gaussians (dotted lines), with fit parameters given in the legend. Bottom panel:

Distribution of 20 per cent (blue) and 80 per cent (red) chance of pericentric passage
relative to the distribution for all satellites.
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Figure 4.7: As in Fig. 4.6, but for the bulge colour.
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Figure 4.8: As in Fig. 4.6, but for the disk colour.
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Figure 4.9: Bulge-to-total ratio in the r-band distribution of cluster satellites. Top panel:

The absolute distribution for all satellites (black histogram), and the distribution for satel-
lites with a probability of having experienced a pericentric passage of 20 per cent or less
(blue histogram) and 80 per cent or more (red histogram). The distributions are normalized
so that they all have the same integral for easier comparison. Bottom panel: Distribution
of 20 per cent (blue) and 80 per cent (red) chance of pericentric passage relative to the
distribution for all satellites.
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fraction’ fb so that the blue peak is weighted by fb and the red peak by (1− fb). The total
normalization is fixed by our sample size. A preliminary examination of the data (discussed
in detail in §4.2, see especially Figs. 4.6, 4.7, 4.8) revealed that µr, σr and σb do not change
significantly between satellites that have most likely not experienced a pericentric passage
and satellites that have most likely experienced a pericentric passage. In the following
analysis we fix these parameters to their best-fit values for the disk sample (see Fig. 4.8
and Table 4.2 for an example of parameter choices, though these can be refined e.g. with
the results in §4.4.2). This leaves two parameters (µb and fb) to be fit.

We perform a bayesian statistical analysis (additional background and detail is given
in Appendix B) to simultaneously fit this model to our disk colour data (we choose
the disk component because it is expected to be most sensitive to environmental ef-
fects, see Hudson et al., 2010) in several bins of time since infall. We use our infall
time PDFs to weight the contribution of each data point to each time bin. There is a
pair of parameters (µb, fb) for each time bin; we further subscript them with an index
{j ∈ N|0 ≤ j < Nt} where Nt is the number of time bins. Our data are subscripted with
an index {i ∈ N|0 ≤ i < Nd} where Nd is the number of data points. Thus the phase space
coordinates and (g − r) colour of a single data point are denoted (R, V )i and (g − r)i,
respectively. Formally, from Bayes’ theorem:

P (A|B) ∝ P (B|A)P (A) (4.1)

Pi({µbj, fbj}j=0...Nt
, (R, V )i|(g − r)i) ∝
Pi((g − r)i|{µbj,fbj}j=0...Nt

, (R, V )i)Pi({µbj, fbj}j=0...Nt
, (R, V )i)

(4.2)

We define the likelihood P (B|A) as:

Pi((g − r)i|{µbj, fbj}j=0...Nt
, (R, V )i) =

Nt
∑

j=0

pj((R, V )i)Pi((g − r)i|µbj, fbj) (4.3)

where pj expresses the probability that datapoint i belongs to time bin j. This is easily
computed from our PDFs by integrating the PDF over the time bin (the PDF corresponding
to the phase space coordinates of the data point is used):

pj((R, V )i) =

∫ tj+1

tj

PDF((R, V )i)dt (4.4)

Finally, Pi((g − r)i|µbj, fbj) is simply our double gaussian model evaluated at the data
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point:

Pi((g − r)i|µbj, fbj) =
fbj

σb

√
2π

exp

[

−((g − r)i − µbj)
2

2σ2
b

]

+
(1− fbj)

σr

√
2π

exp

[

−((g − r)i − µr)
2

2σ2
r

] (4.5)

We adopt a flat prior for all our parameters fbj and µbj. An example of possible parame-
ter ranges are shown in Table 4.2. We use an implementation of our model in the Bayesian
Analysis Toolkit (BAT) software package1 (Caldwell et al., 2009) to compute a Markov
Chain Monte-Carlo (MCMC) estimate of the posterior distribution of our parameters by
maximizing:

log
∏

i

Pi((g − r)i|{µbj, fbj}j=0...Nt
, (R, V )i)

⇐⇒
∑

i

logPi((g − r)i|{µbj, fbj}j=0...Nt
, (R, V )i)

(4.6)

This method is implemented and being tested, debugged and tuned. This must be done
carefully since a full-scale run on our dataset can take on the order of several days to
a few weeks. Because of this, no conclusive results are yet available. However, we have
constructed a simpler, faster framework to obtain a rough picture of how the colour dis-
tribution of cluster satellites evolves as a function of their time spent in the cluster. We
present this method and its results in §4.4.

4.4 Preliminary: Colour Evolution of Cluster Satel-

lites

In an effort to obtain some preliminary results on the colour distribution evolution of
cluster satellites, we devised a second fitting method. It is conceptually simpler than that
in §4.3, and is also many orders of magnitude faster computationally, but comes with
several important caveats. First, the errors on the results are uncertain; we provide only
an estimate. Second, the colour distributions in the various time bins are decoupled and
fitted individually, so the amount of information constraining each fit is greatly reduced.
Third, and most importantly, the infall time distributions for satellites in each time bin

1https://www.mppmu.mpg.de/bat/
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(from the PDFs at the location of each in projected phase space) are convolved with the
colour distribution of the satellites. Stated concisely, this smooths out the colour evolution.
Each of these caveats is discussed in more detail in §4.4.3. First, though, we present the
method in §4.4.1 and its results in §4.4.2.

An overview of the approach is as follows. First, the colour distribution (a histogram)
for an interval in infall time is constructed from the probability that each satellite has
an infall time in this interval. This distribution is then fit with with a double-gaussian
function independently in each time bin.

4.4.1 Fitting Procedure

In this subsection we present the details of this fitting procedure. The notation is kept as
consistent as possible with §4.3. We split the range of possible infall times into bins which
we label with subscripts {j ∈ N|0 ≤ j < Nt}. We denote the lower edge of bin j by tj, so
the bin’s upper edge is at tj+1. For each time bin, we construct a histogram of the colour
distribution. Each bin of these histograms is labelled with a subscript {i ∈ N|0 ≤ i < Ni};
each bin has a height µj,i with associated error σ2

j,i and centre (g − r)i. The half-width
∆(g − r) is the same for every bin. Finally, we subscript quantities that are defined for
every galaxy (data point) with a subscript {d ∈ N|0 ≤ d < Nd}. For instance, the colour of
a galaxy is (g − r)d, its projected phase space coordinates are (R, V )d and the probability
that it has an infall time that falls in time bin j is:

wj,d =

tj+1
∫

tj

PDF ((R, V )d)dt (4.7)

µj,i and σ2
j,i are constructed from these wj,d by considering them as the mean and standard

deviation of a sum of independent random variables. To make the equations more readable,
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(g − r) has been replaced with the shorthand C, for colour. The histogram is normalized.

µj,i =

Nd
∑

d=0

[wj,d(Ci −∆C < Cd ≤ Ci +∆C)]

Nd
∑

d=0

wd

(4.8)

σ2
j,i =

Nd
∑

d=0

[wj,d(1− wj,d)(Ci −∆C < Cd ≤ Ci +∆C)]

[(

Nd
∑

d=0

(Ci −∆C < Cd ≤ Ci +∆C)

)(

Nd
∑

d=0

wj,d

)]2
(4.9)

The inequalities are to be evaluated to 1 or 0 depending on whether they are true or
false, respectively. As the number of data points contributing to a bin increases, the
distribution described by a (µj,i, σ

2
j,i) pair approaches a gaussian distribution by the central

limit theorem.

The ensemble of (µj,i, σ
2
j,i) pairs describes a series of histograms, one for each time

bin, that we now desire to fit with our double gaussian model. First, however, there is a
practical difficulty with the σ2

j,is. These encode only the statistical uncertainty in the mean
of each bin, but the scatter in the µj,is is much larger than what would be expected if this
was the dominant source of uncertainty; presumably this scatter is fixed by some property
of the observations or the bulge-disk decomposition; for simplicity we fix all the σ2

j,is to be
of the same order as the observed scatter with σj,i = 0.05 in all colour bins and in all time
bins. We retain the assumption that the errors are gaussian.

The problem of fitting a function (our model function will be denoted Fj; it is defined
by a set of parameters for every time bin j) to a data series with gaussian errors is a
standard problem in Bayesian analysis. We use an MCMC analysis with the well-known
likelihood function:

Pj =

Ni
∏

i=0

1
√

2πσ2
j,i

exp

[

−(µj,i − Fj((g − r)i)
2

2σ2
j,i

]

(4.10)

The large increase in speed in this method comes from the much reduced number of terms
contributing to the product in the likelihood function. Because this method is so fast, we
can afford to fit all parameters of a double gaussian model, i.e. a mean for each peak µj,b

and µj,r (red and blue peak, respectively), a standard deviation for each peak σj,b and σj,r

and the relative normalization of the peaks fj,b, fj,r = (1− fj,b). In practice we constrain
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the blue peak to be bluer than the red peak by fitting ∆µj,r = µj,r−µj,b with the constraint
∆µj,r > 0. The function to fit is then:

Fj((g − r)i) =
fj,b√
2πσj,b

exp

[

−((g − r)i − µj,b)
2

2σ2
j,b

]

+
(1− fj,b)√

2πσj,r

exp

[

−((g − r)i − (µj,b +∆µj,r))
2

2σ2
j,r

]

(4.11)

For all fits we adopt the (quite broad) parameter ranges 0.2 < µj,b < 0.75, 0.01 < σj,b < 1.0,
0.0 < ∆µj,r < 0.6, 0.0 < fj,b < 1.0 with flat priors on all parameters.

4.4.2 Colour Evolution Results

The results of the fitting process described in §4.4.1 applied to our total galaxy colour
data are summarized in Table 4.3 and applied to our disk colour data in Table 4.4. Of the
parameters fit, three appear to show no significant change over the 13 Gyr spread in infall
times. The width of both peaks remains unchanged, except in the time bin that includes
interlopers, where the blue peak is somewhat wider. The position of the red peak also
shows no significant evolution. There may be a weak trend of reddening of red disks with
increasing time since infall, but it is consistent with no evolution within our 1σ estimated
errors. The position of both peaks and the blue fraction as a function of time since infall
are shown in Fig. 4.10 for total colours and in Fig. 4.11 for disk colours. The position of
the blue peak moves toward the red with increasing time since infall, and simultaneously
the ratio of blue to red galaxies decreases. The evolution is qualitatively similar in both
the total colour and disk colour, with faster reddening until about 4 Gyr since infall (i.e.
until the mean pericentre time), then slower reddening thereafter. We note that the region
of projected phase space occupied by satellites just before pericentre (slightly less than 4
Gyr since infall) and just after pericentre (slightly more than 4 Gyr since infall) is partially
degenerate, which might näıvely lead us to the prediction that the colour evolution would
be locally symmetric near t = 4 Gyr. However, the clear asymmetry in the evolution about
this point leads us to believe that this is a time marking a real transition in the colour
evolution.

It is not clear whether the colour evolution of individual galaxies is rapid or slow. The
gradual drift toward the red of µj,i is suggestive of a slow process, but the evolution of
fj,b could also lead to the conclusion that individual galaxies “jump” rapidly from one
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Figure 4.10: Left panel: Evolution of the peak of the blue (red) distribution is shown with
blue (red) symbols as a function of time for total colours fit by the method of §4.4.1. The
horizontal error bars indicate the extent of the time bins, while the vertical error bars are
a very rough estimate of the error in the parameters (see §4.4.3). The arrows indicate the
inclusion of interlopers in the first time bin. Right panel: As left, but showing the evolution
of the relative normalization of the red and blue distributions.

distribution to the other. It may be that both interpretations are correct and there are
processes driving slow and rapid colour evolution operating in tandem.

Care must be taken in interpreting these results for the reasons alluded to above and
discussed in §4.4.3 below, but at the very least these results seem suggestive of there being
an environmental effect on galaxy colour as early as virial radius crossing, and potentially
even before this. The decrease in reddening rate after pericentre passage is also suggestive
of this being a key time in the history of a satellite galaxy.

4.4.3 Caveats and Discussion

There are three major caveats relating to the interpretation of the results of §4.4.2: the
reliability of the errors quoted on the fits, the effect of decoupling the time bins and the
convolution of the infall time distributions with the colour distributions.

The assumption that the error in the colour histogram means σ2
j,i is not dominated by

the statistical error (equation 4.9) but rather by some other source, motivating us to set
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Figure 4.11: As in Fig. 4.10, but for disk colour distribution fits.

σ2
i,j = 0.05 to approximately match the observed scatter, means that the uncertainty in

our fit parameters is only approximate. The vertical error bars in Figs. 4.10-4.11 should
therefore be interpreted only as a rough guess at the errors. Our estimated value of
σ2
i,j = 0.05 is likely somewhat generous in some regions, particularly the red peak which

appears to be very well modelled by a gaussian curve. In other less occupied regions of
colour space (e.g. the tail of the blue distribution), the scatter may be larger than estimated
(one likely explanation being shot noise). It is difficult to say what effect improving these
estimates might have on the confidences in the fits, so making strong statements about the
significance of the observed trends is difficult.

The time bins are decoupled in the sense that the fit for one time interval is indepen-
dent of the others (the conspicuous correlations visible in Fig. 4.10-4.11 are due to the
convolution discussed in the next paragraph). This means that the amount of informa-
tion constraining each fit is in a sense reduced by a factor of 1

Nt
, and likely contributes

to increasing the error in the fits. Performing the fits simultaneously allows for the con-
struction of a likelihood function that attempts to determine the “correct” time bin for a
galaxy rather than forcing a contribution to the colour histogram of every time bin from
every galaxy as we do here.

The infall time distributions are convolved with the colour distributions. This process
has the effect of blurring out the colour distributions2. Each histogram still contains some

2The effect of convolution of the infall time distributions with the colour distributions can be understood
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information since the contributions will be dominated by galaxies from regions with high
certainty of being in that particular time bin, but some level of contamination is inevitable,
and acts as a sort of smoothing filter on the parameter evolution curves. This effect is most
pronounced for intervals of time since infall that do not occupy a relatively distinct region
of phase space; for instance the backsplash population overlaps significantly with both
infalling and virialized haloes, making the colour histogram for these satellites particularly
uncertain. This effect is not accounted for in the error bars in Figs. 4.10-4.11. In any case,
it is much more desirable (but also much more computationally demanding) to attempt
to de-convolve the colour and infall time distributions. One way to do this is to convolve
the model function with the infall time distributions then compare to the observed colour
data; this is the approach discussed in §4.3 that has not yet produced results.

With these caveats in mind, the two main conclusions that we retain from this analysis
are that the effect of environment on colour (and by extension star formation) begins in
the infalling phase of the satellite orbit, and that the first pericentric passage marks a
transition in the colour evolution.

in more detail by examining the construction of the colour histograms. Consider a toy model where infalling
galaxies are blue until they reach pericentre, then immediately become red after passing pericentre (these
will be called “virialized” in this example). Suppose we consider two hypothetical regions in (R, V ) space,
region 1 where we expect 60 per cent infalling and 40 per cent virialized galaxies and region 2 where we
expect 40 per cent infalling and 60 per cent virialized galaxies. To construct a colour distribution for the
infalling population using convolution, we sum together the colour distribution in region 1 with weight 0.6
and in region 2 with weight 0.4. The colour distribution obtained contains 52 per cent blue galaxies and
48 per cent red galaxies. A similarly constructed colour distribution for the virialized population contains
48 per cent blue galaxies and 52 per cent red galaxies. The true colour distributions (100 per cent blue, 0
per cent red for infalling and 0 per cent blue, 100 per cent red for virialized) have been blurred together.
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Chapter 5

Conclusions

We begin by summarizing our results (§5.1). We then place our results in a broader context
by comparing them to related work by other authors (§5.2). We finish with some ideas for
possible continuations of this work (§5.3).

5.1 Summary

In Chapter 3 we explored the orbital statistics of cluster satellites using cosmological N-
body simulation data. We found that the phase space distribution of infalling, backsplash
and virialized satellite haloes are different but not everywhere distinct. Different popula-
tions of satellite haloes are better separated in phase space than in the radial coordinate
alone, but there is no immediately obvious cut that we can impose on the projected phase
space coordinates of a satellite galaxy to separate different populations. We examined the
entire projected phase space and determined the confidence with which the time since infall
can be assigned to a satellite occupying each region. This lets us easily identify regions
where the time since infall can be determined accurately enough to separate satellite popu-
lations. However, the addition of an interloper population makes matters somewhat worse;
the region of maximum discrimination between satellite populations is also the region of
maximum overlap between satellites and interlopers.

We have developed a tool that estimates the infall time and a confidence in the estimate
for a satellite halo given its projected phase space coordiantes. The possible infall times for
a region of projected phase space are weighted according to the frequency of their occurence
in simulation, then an infall time is randomly selected from this weighted distribution.
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More generally, it also provides a full PDF of the possible infall times of a halo given these
same coordinates. This method is easily adapted to parameters other than the time since
infall, for instance the closest approach to host centre or the time since first pericentre, or
to higher redshift systems.

In Chapter 4 we applied the PDFs derived in Chapter 3 to the study of the colour
distributions of cluster satellites as a function of the time since their infall into the clus-
ter. Colour can in principle be related back to a SFH, so tracing the colour evolution
can constrain the SFHs of the satellites. This can in turn give some insight into which
mechanisms are dominant in driving the observed environmental trends. We present two
statistical methods to disentangle the phase space distribution of galaxies and recover the
evolution of the satellite colour distribution as a function of time spent in the cluster envi-
ronment. The first is thought to be superior but is much more expensive computationally
and is still being tested and tuned. The second has the advantage in speed but comes with
several important caveats. Nevertheless, the results of this second method are suggestive
of an initially relatively rapid reddening of blue galaxies upon entering the cluster environ-
ment. The reddening may begin around the time that the satellite crosses the virial radius,
or potentially even earlier. The reddening appears to slow substantially after a time equal
to the time it takes a typical satellite to reach pericentre, suggesting that this is a key time
in the life (and death) of a satellite galaxy. It is not clear whether the colour evolution of
individual galaxies is rapid or slow. There may be processes driving both rapid and slow
colour evolution occurring simultaneously.

5.2 Comparison to Previous Work

Many authors have previously considered trends with cluster-centric radius (colour gra-
dients, for instance), but relatively few have used velocity space information in similar
analyses. The velocity distribution for cluster satellites that we find is in good agreement
with that of Gill et al. (2005), and like them, we find that satellite populations are bet-
ter separated in projected phase space than in projected radius alone. The regions of
low cross-contamination between satellite populations that we find are a superset of those
identified by Mahajan et al. (2011). We build on this result by quantifying the mixture
of different satellite populations at every point in phase space. A key point left out by
both of these studies is the inclusion of an interloper population in the projected phase
space distribution of simulated haloes. This makes separating out the backsplash popula-
tion substantially more difficult but is crucial to constructing a fair comparison between
observation and simulation (unless some independent method to separate out the interlop-
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ers can be devised; Knebe et al. (2011) proposes one possible method based on the stellar
kinematics and concentrations of the satellites).

Baldry et al. (2004) modelled the (u−r) colour distribution of SDSS galaxies (including
satellites, but predominantly field galaxies) with a double gaussian function. We find that
this double gaussian fit works equally well in our sample of cluster satellites, but that the
bimodality is much less pronounced in (g − r) colour. While it would cost us the ability
to trace the colour evolution of the bulge and disk components separately, we feel it may
be worth investigating the evolution of (u − r) colour as a function of time since infall; if
nothing else, this would give some additional information to be folded into future analyses.
Baldry et al. (2004) also notes a strong dependence of the colour distribution on galaxy
absolute magnitude (or, approximately, mass). This is a parameter we have yet to explore
fully, but it is clearly important.

The key quantities we wish to compare with current measurements are the time at
which environment begins to affect a satellite galaxy and the timescale on which quenching
processes occur. While our results in this area are still only weakly constrained, we see
evidence for (1) environment having an effect on galaxy colour potentially as early as a
few Gyr before first pericentre, but certainly before reaching pericentre and (2) colour
evolution slowing immediately after the first pericentric passage. Mahajan et al. (2011)
argued that star formation quenching is completed in a single passage through the cluster,
which seems consistent with our results. In sharp contrast, Wetzel et al. (2012) argues that
environment does not even begin to have an effect on star formation in satellites (though
the gas supply is of course affected) until several Gyr after crossing R200b, well beyond
the first pericentric passage and into the backsplash portion of the orbit. This appears to
be in direct contradiction with our results, but we wish to confirm this with the results
of our more robust MCMC analysis. Wetzel et al. (2012) also argues that all apparent
environmental effects on star formation beyond R200b can be accounted for by backsplash
galaxies; in other words, outside this radius, infalling galaxies have yet to be affected by
the environment. This is also an interesting claim to verify once results from our more
robust MCMC method are available.

5.3 Future Directions

There are several extensions of this work that we believe are worth pursuing. The first (and
perhaps most obvious) one is to complete the analysis described in §4.3; our preliminary
assessment points to interesting results to come. The logical next step following this is
to relate the colour distribution evolution back to its more fundamental counterpart, the
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SFH, using population synthesis modelling. During this process, it may be worthwhile to
investigate other measures of star formation activity to better constrain the possible star
formation histories of individual satellites. Some examples of other indicators that can
be used to measure star formation are ultraviolet continuum emission, Hα line emission,
far-infrared continuum emission and [OII] line emission (Kennicutt, 1998, gives a review
of these and more). The catalogue of Brinchmann et al. (2004) provides SFRs for a large
sample (∼ 105) of SDSS galaxies based on a combination of several such indicators.

So far, our parameterization of orbital history has been very simple, counting the
time since infall. It is worth exploring other parameterizations, which may correlate more
strongly with SFH. For instance, using the time of first pericentre as a reference time
instead of 2.5rvir crossing would provide a reference time that is less arbitrarily defined.
Our result showing that first pericentre appears to be an important time in the life of
a satellite makes this choice even more attractive. However, this means one needs to
introduce negative time into the simulation book keeping, e.g. instead of the mean first
pericentre occuring at t = 4 Gyr, first pericentre occurs at t = 0 Gyr and the mean initial
crossing of 2.5rvir occurs at t = −4 Gyr. Furthermore, infalling haloes have not yet had
a pericentric passage, so attributing them a time of first pericentric passage is somewhat
ill-defined. One way to achieve this in a consistent manner would be to use a simulation
that proceeds past z = 0, but this is something of a niche application making it difficult
to justify the large computational cost of such a simulation.

Another effect that our analysis has thus far completely ignored is “group pre-processing”.
In principle all the required information to explore the effect of membership in a group
environment before accretion into a cluster environment is contained in the merger trees
we used to produce our PDFs. One simply needs to replace time of first infall onto a final
host above some mass threshold with time of infall onto any host above a given mass.
This sustantially complicates the interpretation of the results, motivating our decision to
attempt to understand the simpler case first, but it is likely crucial to a complete model
of environmental effects on star formation.

We also wish to exploit the superior mass and time resolution of the Bolshoi sim-
ulation to extend the dynamic range of our PDFs. Interestingly, Geha et al. (2012) and
Teyssier et al. (2012) suggest that for low mass galaxies (. 109 M⊙), the quenching processe
is strictly environmentally regulated. This is in contrast to the picture usually invoked for
high mass galaxies where both environmental and internal (“mass quenching”) mechanisms
are thought to be important. This makes the study of such low mass galaxies attractive
since the number of processes to disentangle may be much lower. However, observations
of large numbers of dwarf galaxies are limited to relatively nearby clusters.

78



As the volume of high redshift observations continues to grow, applications of our
method to these datasets becomes increasingly attractive. At high (z ∼ 1) redshift, satel-
lites only have time to complete about one orbit in a cluster, which we speculate could
substantially simplify the projected phase space distribution of satellites. Star formation
rates at high redshift are on average higher than at z = 0, so quenching effects may be
more pronounced as well.

Finally, we highlight one other possible application of our PDFs. By combining the
information on orbital history encoded in the PDFs and gravitational lensing observations,
it may be possible to directly probe the effect of environment on the dark matter component
of satellite systems.
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Appendix A

Results from the Bolshoi Simulation

The Bolshoi simulation is a higher resolution simulation with the same cosmology, physics
and number of particles as the MDR1 simulation used throughout this thesis. It sacrifices
a factor of 64 in volume for a factor of 64 improvement in mass resolution and a factor
of 7 improvement in force resolution. It also extends to earlier times and has a finer time
spacing between its output snapshots; see Table A.1 for a summary of the differences
between the two simulations. Because of its close similarity to MDR1 it offers both an
excellent way to check for resolution effects in our results and a natural way to extend the
applicable mass range of our PDFs.

We process the Bolshoi output in exactly the same way as we did MDR1. We find
592 haloes with a mass ≥ 1014 M⊙, about a factor of 64 less than in MDR1. Before any
mass or sanity cuts our catalogue contains 1,053,807 orbits. The mass function for these
satellites is shown in Fig. A.1. Note that due to the higher resolution of Bolshoi, we are less

Table A.1: Summary of the differences between the MDR1 simulation and the Bolshoi
simulation. Values from Riebe et al. (2011).

Parameter MDR1 Bolshoi
Box size (h−1Mpc) 1000 250
Number of particles 20483 20483

Mass resolution (h−1 M⊙) 8.721× 109 0.135× 109

Force resolution (h−1kpc) 7.0 1.0
Initial redshift 65 80
Output snapshots 42 180
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Figure A.1: Mass function of satellites in a sample constructed in the same way as our
MDR1 sample (see Fig. 3.1). The mass function of all satellite haloes in our initial sample
(dotted black line) and the mass function of satellite haloes that have experienced at
least one pericentric passage (solid black line) are shown; in both cases the masses are
measured at the time of infall on to their host. The coloured lines separate the satellites
that have experienced a pericentric passage into bins of pericentric distance, as labelled.
The total number of satellites contributing to each mass function are labelled N . The thick
vertical line shows a mass cut 64 times lower than that imposed on the MDR1 satellites
(Mcut = 1010.1 M⊙).

sensitive to the artificial destruction of satellites – there is less flattening of the blue curve.
Above the mass cut used in MDR1 (1011.9 M⊙), there is essentially no artificial destruction
of satellites, allowing for the possibility of a direct test of the impact of this effect on our
results. After a mass cut at 1010.1 M⊙ and the same sanity cuts as we used on MDR1, we
are left with 481,048 orbits. Our sample of interlopers with masses ≥ 1010.1 M⊙ contains
515,000 haloes.

The left panel of Fig. A.2 shows the distribution of satellites in the space of infall time
and cluster-centric radius, analogously to Fig. 3.2 which shows the same distribution for
the MDR1 simulation. The two distributions are qualitatively very similar, except that
in the Bolshoi distribution the oldest virialized satellites have infall times dating back to
1-2 Gyr earlier than those in MDR1. This is because lower mass haloes collapse earlier
and therefore have a range of infall times extending to earlier times than high mass haloes,
and our mass cut is applied to the infall mass of the haloes. The right panel shows the
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Figure A.2: Left panel: Abundance of satellites in bins of cluster infall time, defined as
first inward crossing of 2.5 rvir, and radial distance from cluster centre at t = 0. Compare
to MDR1 in left panel of Fig. 3.2. The two distributions are qualitatively very similar,
except that in the Bolshoi distribution the oldest virialized satellites have infall times dating
back to 1-2 Gyr earlier than those in MDR1. The lines extending horizontally left from
the infalling population are artifacts of the binning process and should be ignored. Right

panel: Phase space distribution of the satellites in Bolshoi. The distribution is qualitatively
indistinguishable from that of MDR1 satellites shown in the upper left panel of Fig. 3.3

distribution of satellites in phase space, which is qualitatively indistinguishable from the
distribution of MDR1 satellites shown in the upper left panel of Fig. 3.3.

Fig. A.3 shows the projected phase space distribution of Bolshoi satellites in bins of infall
time, analogously to Fig. 3.4 for MDR1. Again, the distributions for the two simulations
are very similar, except that Bolshoi has a larger relative number of satellites in the bin
with the earliest infall times, for the same reasons explained above.

The above discussion serves to show that Bolshoi’s higher resolution does not change
anything dramatic in the phase space and infall time distributions of the satellites. We
would expect to get essentially the same results from Bolshoi with a mass cut at 1011.9 M⊙

as from a (250h−1Mpc)3 sub-volume of MDR1. With a bit of careful calibration, the PDFs
we produced from the two simulations can be combined into a single PDF that benefits
from both the lower mass resolution limit of Bolshoi and the high cluster count in MDR1.
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Figure A.3: Projected phase space distribution of Bolshoi satellites in bins of infall time
(the top left panel shows the distribution for all times). This distribution is qualitatively
identical to the same distribution in MDR1 (Fig. 3.4) except for the bottom right panel
which has a higher relative number of satellites in Bolshoi because of the lower mass cut.
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Appendix B

Markov Chain Monte-Carlo Analysis

In the framework of Bayesian statistics, the governing principle is Bayes’ theorem:

P (A|B) =
P (B|A)P (A)

P (B)
(B.1)

P (A|B) can be read as “the probability of A given B”. The left-hand side is called the
posterior distribution while on the right hand side is product of the likelihood P (B|A)
and the prior distribution P (A), normalized by P (B). Qualitatively, this describes a way
in which a new state of knowledge (posterior) can be reached based on a current state
of knowledge (prior) and a description of the relative frequency of possible outcomes of a
test of that knowledge (likelihood). The normalization is only required if one wishes to
discuss absolute probabilities; if relative probabilities are sufficient to the desired analysis
(in the context of this thesis, they are), then Bayes theorem expressed as a proportionality
between the posterior and the product of the likelihood and the prior is sufficient.

Bayes’ theorem has many possibly applications; that of interest here is the estimation
of the parameters ~λ of a model M based on some data ~D. (B.1) is now interpreted as a

means to compute the probability thatM(~λ) is a good description of ~D (posterior) in terms

of the probability that ~D would be obtained from a system described by M(~λ) (likelihood)

and any a priori constraints on M(~λ) (prior):

P (M(~λ)| ~D) ∝ P ( ~D|M(~λ))P (M(~λ)) (B.2)

If the priors are chosen to give equal weight to all possible parameter values (typically
within some interval since the interval (−∞,∞) is difficult to deal with computationally)
– “flat priors”, this describes a maximum-likelihood estimator for the model parameters.
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Once the likelihood and priors are suitably defined, all that remains is to evaluate the
posterior at every point in parameter space. For small numbers of discrete-valued parame-
ters this may be feasible, but with a large number of continuous parameters, even a coarse
sampling across the entire parameter space becomes prohibitively expensive computation-
ally; some other means of estimating the posterior distribution is required. One possible
method is the use of Markov chains.

A Markov chain is defined as a sequence of random numbers in which the probability
distribution for each element depends only on the value of the previous element in the
sequence (and not of a longer history of elements). Applied to a maximum-likelihood
estimator, the chain begins at an arbitrary location in parameter space and makes a series
of hops to new locations, with each hop being preferentially (but not necessarily) toward

positions in parameter space where M fits ~D better than at the current parameter space
location. A MCMC maximum likelihood estimator uses multiple Markov chains running
in parallel to estimate the variance of the posterior distribution. This can be compared to
the variances of the individual chains to determine whether convergence has been achieved.

The MCMC implementation used in the present thesis was constructed using BAT
(Caldwell et al., 2009). This toolkit provides all the machinery to perform the analysis,
requiring only the definition of a model with a suitably defined likelihood function and list
of parameters with their ranges and prior distributions (those we used for our analysis are
laid out in §4.3). The algorithm used to compute the chain has two principle elements, a
proposal function and an acceptance ratio. The chain is computed in two stages: an initial
“pre-run” phase used to calibrate the proposal function and ensure that convergence will
be achieved, followed by the actual estimation of the posterior distribution.

The proposal function in BAT is very simple; a proposed state is chosen from a uniform
random distribution spanning the entire parameter space – this is the simplest possible pro-
posal function. The proposal function is refined during the pre-run by adjusting the reach
of each parameter, so for instance instead of choosing from a uniform random distribution
across the full range of a particular parameter, the reach may be adjusted to choose from
only half the full range of the parameter, centered around the current parameter value.
During the pre-run a new value for each parameter is proposed and accepted or rejected in
turn. The ratio of acceptances to proposals for a given parameter defines the “efficiency”.
The reach of each parameter is adjusted dynamically until all efficiencies are within a
desired range (15-50 per cent). A low efficiency is undesireable because it increases the
computational expense of producing the chain (evaluating a proposal is expensive; if it is
rejected, computation is effectively wasted). A high efficiency is undesireable because it is
an indication that the chain may not be sampling the full extent of the posterior distribu-
tion – rejections indicate that the chain is exploring the boundaries of the distribution, so
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at least a few are desireable.

The acceptance ratio is the expression used to evaluate whether to accept or reject a
proposal. It is defined as the ratio of two likelihoods:

R =
P ( ~D|M(~λ′))

P ( ~D|M(~λ))
(B.3)

where ~λ represents the current position of the chain in parameter space and ~λ′ represents the
proposed position. In practice the likelihood function is often defined as a product of many
terms – one for each data point – which is susceptible to numerical overflow on a computer.
To reduce the chance of overflow, it is more practical to work with the log-likelihood,
which is simply the logarithm of the likelihood function, and so the product of many terms
becomes the sum of the logs of many terms. Once computed, the acceptance ratio is
compared to a random number U drawn from a uniform distribution on the inverval [0, 1].
The proposal is accepted if R > U . The reason for this comparison is worth explaining.
If the proposed position is more likely than the current position (R > 1 ⇒ R > U),
the proposal is automatically accepted. If the proposed position is less likely than the
current position, it is randomly accepted or rejected, but more likely proposals (R near 1)
are accepted more often than less likely proposals (R near 0). This criteria helps ensure
that the chain does not get “stuck” indefinitely around a local maximum of the posterior
distribution; there is always a chance that a proposal that is unlikely is accepted and takes
the chain away to explore another region of parameter space. This particular method is
called the Metropolis algorithm.

Once the chain has completed several (in our case 100,000) propose-accept/reject iter-
ations, the density of chain points in parameter space tends toward the probability density
of the posterior distribution; an estimate has been constructed. This estimate encodes a
wealth of information about the parameters of the model given the data. Not only is a
best fit (mode) for each available, but the full probability distribution as well. This al-
lows a straightforward calculation of virtually any desired statistical quantity, for instance
confidence intervals for each parameter, a 1σ region about a fit, or correlations between
any subset(s) of parameters. The results for each parameter can be evaluated individually
or in groups by “marginalizing” over the other parameters if desired. Recalling that the
Monte Carlo component of the analysis uses multiple chains in parallel, these allow robust
tests of convergence and ergodicity (independence of results from initial conditions).
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Peng, Y.-j., Lilly, S. J., Kovač, K., et al. 2010, ApJ, 721, 193

94



Prada, F., Klypin, A. A., Cuesta, A. J., Betancort-Rijo, J. E., & Primack, J. 2012, MNRAS,
423, 3018

Press, W. H., & Schechter, P. 1974, ApJ, 187, 425

Riebe, K., Partl, A. M., Enke, H., et al. 2011, arXiv:1109.0003

Rocha, M., Peter, A. H. G., & Bullock, J. 2012, MNRAS, 425, 231

Simard, L. 1998, in Astronomical Society of the Pacific Conference Series, Vol. 145, Astro-
nomical Data Analysis Software and Systems VII, ed. R. Albrecht, R. N. Hook, & H. A.
Bushouse, 108

Simard, L., Mendel, J. T., Patton, D. R., Ellison, S. L., & McConnachie, A. W. 2011,
ApJS, 196, 11

Smith, R., Davies, J. I., & Nelson, A. H. 2010a, MNRAS, 405, 1723

Smith, R. J., Lucey, J. R., Hammer, D., et al. 2010b, MNRAS, 408, 1417

Springel, V. 2010, MNRAS, 401, 791
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