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ABSTRACT
N-body simulations make unambiguous predictions for the abundance of substructures within
dark matter haloes. However, the inclusion of baryons in the simulations changes the picture
because processes associated with the presence of a large galaxy in the halo can destroy
subhaloes and substantially alter the mass function and velocity distribution of subhaloes.
We compare the effect of galaxy formation on subhalo populations in two state-of-the-art
sets of hydrodynamical �cold dark matter (�CDM) simulations of Milky Way mass haloes,
APOSTLE and AURIGA. We introduce a new method for tracking the orbits of subhaloes
between simulation snapshots that gives accurate results down to a few kiloparsecs from the
centre of the halo. Relative to a dark matter-only simulation, the abundance of subhaloes in
APOSTLE is reduced by 50 per cent near the centre and by 10 per cent within r200. In AURIGA, the
corresponding numbers are 80 per cent and 40 per cent. The velocity distributions of subhaloes
are also affected by the presence of the galaxy, much more so in AURIGA than in APOSTLE.
The differences on subhalo properties in the two simulations can be traced back to the mass of
the central galaxies, which in AURIGA are typically twice as massive as those in APOSTLE. We
show that some of the results from previous studies are inaccurate due to systematic errors in
the modelling of subhalo orbits near the centre of haloes.

Key words: methods: Numerical – galaxies: kinematics and dynamics – cosmology: theory –
(cosmology:) dark matter.

1 IN T RO D U C T I O N

In the �-cold dark matter (�CDM) model of cosmology, the for-
mation of cosmic structure proceeds hierarchically by the merging
of smaller structures to form larger ones (Peebles 1980; Davis et al.
1985). Whilst the merging process is incomplete, substructures
can survive within the dark matter halo of a galaxy or cluster
(Ghigna et al. 1998). In galaxies like the Milky Way, many
more such substructures survive than there are visible satellites
(Klypin et al. 1999; Moore et al. 1999). This disparity is the
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natural outcome of physical processes known to be important in
galaxy formation: the reionization of hydrogen around redshift
z = 8 (Planck Collaboration XLVII 2016) and the expulsion of
gas heated by supernovae (Bullock, Kravtsov & Weinberg 2000;
Benson, Frenk & Sharples 2002; Somerville 2002; Okamoto, Gao &
Theuns 2008; Macciò et al. 2010; Sawala et al. 2016). Similarly, an
apparent absence of visible galaxies in the most massive subhaloes
that form in �CDM dark-matter-only simulations (Boylan-Kolchin,
Bullock & Kaplinghat 2011) can be readily explained by processes
related to gas expulsion from subhaloes at early times (Sawala et al.
2013, 2016).

Even though baryon effects are sufficient to account for the
abundance of galactic satellites within the standard �CDM model,
a number of alternative models for the nature of the dark matter
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have been proposed motivated largely by a desire to explain
these so-called missing satellites and too-big-to-fail problems (e.g.
Colı́n, Avila-Reese & Valenzuela 2000; Spergel & Steinhardt 2000;
Petraki & Volkas 2013; Schewtschenko et al. 2015; Hui et al.
2017). With a judicious choice of the additional parameters in these
alternative models, e.g. the mass of a warm dark matter (WDM)
particle, the abundance of satellites in the Milky Way can also
be reproduced (Lovell et al. 2012, 2017). A particularly interesting
WDM candidate is motivated by the discovery of a 3.5 keV emission
line in the X-ray spectra of galaxies and clusters (Boyarsky et al.
2014; Bulbul et al. 2014). Whilst the nature of the origin of this
line is disputed (Malyshev, Neronov & Eckert 2014; Anderson,
Churazov & Bregman 2015; Jeltema & Profumo 2015; Franse et al.
2016; Riemer-Sørensen 2016), if its origin is not explicable within
the standard model of particle physics, it could be the result of the
decay of 7 keV sterile neutrino dark matter.

A key prediction that distinguishes CDM from some of the
alternatives, such as WDM, is the abundance of small-mass haloes
and subhaloes. In CDM, the halo mass function continues to rise
to small masses (Diemand, Kuhlen & Madau 2007; Springel et al.
2008), whereas in WDM, the halo mass function is truncated at
a mass on the scale corresponding to dwarf galaxies (Colı́n et al.
2000; Lovell et al. 2012; Schneider et al. 2012; Hellwing et al. 2016;
Bose et al. 2017). In sterile neutrino models, the power spectrum of
primordial fluctuations depends not only on the dark matter particle
mass but also on an additional lepton asymmetry parameter. In
the coldest sterile neutrino model compatible with the 3.5 keV line
originating from particle decay, the mass function is suppressed by
a factor of 5 relative to CDM at 108 M� and is negligible at 107 M�
(Bose et al. 2017). Thus, detection of haloes of mass below 107 M�
would rule out this candidate particle and set a lower limit larger
than 7 keV for the sterile neutrino mass. Conversely, a convincing
non-detection of haloes of mass below ∼108 M� would rule out
CDM (Li et al. 2016).

If they exist, the vast majority of these small-mass haloes will
be dark, that is, almost completely devoid of baryonic matter.
This baryon deficit is the result of reionization and supernova
heating (Okamoto et al. 2008; Sawala et al. 2016). These dark
objects can be detected through their gravitational interaction with
visible matter. A particularly promising test is gravitational imaging
(Koopmans 2005) in which low-mass haloes perturb the giant arcs
or Einstein rings that can be produced when a background galaxy
is strongly lensed. This method has already yielded detection of a
1.9 ± 0.1 × 108 M� dark satellite and, with imaging data of good
quality, the detection sensitivity could reach 2 × 107 M� (Vegetti
et al. 2012).1

Although for practical lensing configurations the lensing signal
is dominated by field haloes rather than subhaloes (Li et al. 2017;
Despali et al. 2018), the latter make a non-negligible contribution
to the lensing distortion. Since dark subhaloes in this low-mass
range are uncontaminated by baryonic matter at the present day, the
only uncertainty in their abundance arises from possible interactions
between subhaloes and the central galaxy in their common host halo,
for example tidal disruption. Quantifying these effects is necessary
to make accurate predictions for the expected lensing signals.

The abundance of dark substructure in our own Galaxy may
be probed in other ways. For example, stellar streams, formed by

1The definition of mass here is based on a pseudo-Jaffe model and differs
from the standard definition of halo and subhalo masses used in cosmological
simulations and in this paper.

the tidal disruption of globular clusters or dwarf galaxies, can be
measurably perturbed by passing substructures that produce gaps
in the streams (Carlberg, Grillmair & Hetherington 2012). Surveys
such as Gaia (Perryman et al. 2001; Gilmore et al. 2012), DES
(The Dark Energy Survey Collaboration 2005), and LSST (LSST
Science Collaboration et al. 2009) have the potential to measure
these gaps and thereby determine the mass function of substructures
in the Milky Way down to a scale of 107M� (Erkal & Belokurov
2015a, b). Such methods were explored in Erkal et al. (2016); their
results are affected by a number of uncertainties, as the simulations
used did not incorporate baryonic physics, and a particular velocity
distribution of subhaloes was assumed to break the degeneracy in
the method between perturber mass and velocity.

The role of the central galaxy in the destruction of substructure
has been studied using N-body simulations that incorporate an
analytic disc potential (D’Onghia et al. 2010; Yurin & Springel
2015), as well as hydrodynamical simulations (Garrison-Kimmel
et al. 2017; Sawala et al. 2017). The specific implementation of
baryonic physics is important: the choice of subgrid model, physical
parameters and method for solving the hydrodynamical equations
all individually can affect the abundance of substructure. Errani
et al. (2017) also showed that the inner slope of the density profile
of infalling substructures affects their survival probability. Benitez-
Llambay et al. (2019) showed that the central density of dwarf
galaxies depends strongly on the choice of the star formation gas
density threshold, a CDM cosmological simulation producing cuspy
or cored profiles depending on the choice of this parameter.

The effect of changing the subgrid galaxy formation models on
subhalo abundance has been investigated by Despali & Vegetti
(2017) in the case of the EAGLE and ILLUSTRIS 1003 Mpc3

simulations (Vogelsberger et al. 2014; Schaye et al. 2015). Both
simulations have relatively poor mass resolution (approximately
107 M�), so this study was restricted to massive substructures rather
than the small ones that are important for distinguishing CDM from
WDM. Furthermore, the outputs of these simulations are sufficiently
infrequent that the destruction of subhaloes in the innermost regions
of galaxies, where processes such as disc shocking are important,
is poorly sampled.

With mass resolution of approximately 104 M�, the simulations
that we analyse in this paper have at least 100 times better resolution
than the simulations studied by Despali & Vegetti (2017). In partic-
ular, they resolve the small-mass haloes (mass ∼107 M�) required
to distinguish CDM from WDM. To investigate the dependence
of the surviving subhalo abundance on the choice of baryonic
physics implementation, we compare the APOSTLE (Fattahi et al.
2016; Sawala et al. 2016) and AURIGA (Grand et al. 2016) CDM
simulations. We integrate the orbits of subhaloes between snapshots
to obtain precise estimates of time-averaged subhalo abundance
close to the centre of the halo. This is the first direct comparison
of baryonic physics models at such a high level of resolution, both
spatially and temporally.

2 M E T H O D S

2.1 Simulations

We use two suites of simulations to study the impact of baryons
on galactic substructure. The first is a set of zoom simulations
of Local Group-like volumes from the APOSTLE project (Fattahi
et al. 2016; Sawala et al. 2016). Each volume contains a pair of
haloes, each of mass ∼1012 M�, corresponding to the Milky Way
and Andromeda. We study the same two volumes considered by
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Sawala et al. (2017), giving a total of four high-resolution haloes.
The second suite of simulations, taken from the AURIGA project
(Grand et al. 2016), is a set of zoom simulations of individual Milky
Way–sized galaxies, selected from the EAGLE 1003 Mpc3 simulation
(L0100N1504) (Schaye et al. 2015). There are six high-resolution
(‘level 3’) haloes in the AURIGA sample. In addition, in Section 3.1
we also analyse the larger, ‘level 4’, sample of 30 haloes simulated
at 10 times lower mass resolution than the level 3 examples.

For each simulation, we have both a dark matter only (DMO)
version and a version including baryonic physics relevant to galaxy
formation (gas cooling, star formation, chemical enrichment, black
hole formation, feedback from stellar evolution, AGN, etc.) The
APOSTLE simulations were performed with the EAGLE reference
model (Crain et al. 2015; Schaye et al. 2015), which is based
on GADGET3, whilst the AURIGA simulations were performed with
a variant of the AREPO code (Springel 2011; Grand et al. 2016)
used for the ILLUSTRIS simulation (Vogelsberger et al. 2014). The
parameters of the subgrid models in EAGLE and ILLUSTRIS are
calibrated somewhat differently. In EAGLE, they are chosen so
as to reproduce the z = 0 galaxy stellar mass function and size
distribution, whilst in ILLUSTRIS they are tuned to match the z =
0 ratio of galaxy stellar to dark matter mass and the cosmic star
formation rate at all times. Key diagnostics of each halo, as well as
relevant simulation parameters are listed in Table 1.

The main haloes in the APOSTLE and AURIGA simulations have
broadly similar masses, ∼1012 M�; however, the stellar masses of
the central galaxies in AURIGA are significantly larger, typically
around twice as massive as an APOSTLE galaxy. The AURIGA

galaxies are also more concentrated than the APOSTLE galaxies;
despite being twice as massive, their half-stellar-mass radii are
similar or smaller than those of APOSTLE galaxies.

All quantities in this paper are averaged over the 5 Gyr period,
between redshift z = 0.5 and the present day, to give an expected
probability density over this time interval. In both simulations,
haloes are identified using the friends-of-friends algorithm (Davis
et al. 1985). Halo substructure is identified using the SUBFIND

algorithm (Springel et al. 2001). When computing averages over
multiple haloes, we take the median value in physical units. In
Table 1 and throughout this work, we adopt the common measures
r200 and M200 to define the size and mass of the host haloes,
respectively. r200 is defined as the radius within which the mean
mass density is 200 times the critical density of the Universe. M200

is the total mass enclosed within that radius. When performing time-
averaged calculations which span several snapshots, we interpolate
r200 and M200 linearly in time.

2.2 Halo masses

In DMO simulations, the baryonic mass is collisionless: around
15 per cent (the value of �b/�m) of the mass of each simulation
particle represents ‘collisionless baryons’. In hydrodynamical sim-
ulations, low-mass haloes lose much of their baryonic mass during
reionization or, subsequently, through galactic winds powered by
supernovae. DMO haloes cannot undergo this mass-loss, and so
they will be approximately 15 per cent more massive than their
hydrodynamical counterparts at early times. This difference in mass
is exacerbated with time because more massive haloes accrete mass
at a higher rate than smaller mass haloes and thus grow faster. For
an isolated 108 M� halo at redshift z = 0, this difference in mass
between the same object with hydrodynamics or DMO is typically
around 20–30 per cent (Sawala et al. 2013, 2016).

Most of the results presented in this work do not include a
correction for this effect. This is largely in order to make it easier
to compare with previous studies based on DMO simulations.
However, if we wish to identify what fraction of the reduction in
halo abundance is attributable to interactions with the host galaxy
rather than to this environmentally independent mass-loss effect,
it is necessary to correct the mass of DMO haloes. We use this
correction for some of the calculations presented in Section 3.1.

The procedure we use to correct DMO halo masses is as follows.
We match haloes between the DMO and hydrodynamical versions
of a simulation using the particle matching criterion of Bose
et al. (2017), in which the 50 most bound DM particles of haloes
are matched bijectively between the DMO and hydrodynamical
simulations. We then form a matched ‘field’ sample by selecting
haloes that are at least 500 kpc from a galaxy in the hydrodynamical
version of the simulation, so as to avoid any differences due to
evolution in the tidal field of the main halo. For each AURIGA

level 3 volume, we have approximately 1000 matched objects with
mass between 107 and 108 M�. The numbers for APOSTLE are
significantly larger as a greater fraction of the simulation is field
volume. For each pair of matched haloes, we calculate the ratio
of their masses. We take a DMO halo’s ‘effective mass’ to be the
mass assigned to it by the SUBFIND algorithm, multiplied by the
median of the distribution of mass ratios of this matched sample.
The distributions of mass ratios before and after this procedure
are shown in Fig. 1. When the masses of DMO subhaloes are
corrected by the median mass ratio, the peak of the mass ratio
distribution will occur at a value of 1, by construction (this would
not be the case if we had corrected by the mean mass ratio). The
width of the corrected distribution is around 30 per cent larger for
the corrected distribution. The results shown in Fig. 1 are calculated
using only subhaloes at redshift z = 0. We have checked that for
redshifts between z = 1 and the present day, the size of this effect
is independent of redshift.

We find that the correction factor has no dependence on mass
for haloes with DMO masses between 107 and 109 M�. For the
AURIGA simulations, we find a median correction factor of 0.76,
and the interquartile range of correction factors is 0.12. For the
APOSTLE simulations, the median correction factor is 0.75 due
to the slightly different choice of cosmological parameters in the
simulation. We find that this correction procedure does not work
well for haloes with masses below 107 M�. The probability of a
halo being matched between simulations falls steeply for haloes
smaller than this. Furthermore, the distribution of mass ratios will
be biased as the resolution limit of the simulation imposes a limit on
the smallest possible mass ratio. Therefore, when correcting halo
masses, we restrict our attention to haloes with masses greater than
107 M�.

2.3 Orbits

The time between snapshots in the simulations (around 300 Myr
for APOSTLE and less for AURIGA) is greater than the crossing time
for the central 20–30 kpc of the main halo. These snapshots are
sufficiently infrequent that the subhalo abundance in the central
20 kpc of the halo is poorly sampled. To make precise theoretical
predictions for the abundance of substructure near the centre of
haloes and to quantify the impact of the galactic disc, previous
studies inferred the positions of subhaloes between snapshots using
a cubic spline to interpolate between snapshots (Garrison-Kimmel
et al. 2017; Sawala et al. 2017). Specifically, a cubic piecewise
polynomial was fit to each Cartesian coordinate of the physical
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Table 1. Properties of the haloes analysed in this work at redshift z = 0. Each AURIGA halo is the largest object identified using the friends-of-friends
algorithm. Each APOSTLE halo is either the largest or second largest friends-of-friends group. Nsub is the number of subhaloes identified by the SUBFIND

algorithm (Springel et al. 2001), with mass greater than 106.5 M�, inside r200; Mgal is the total mass of all gas and star particles within 30 kpc from the centre
of the halo; mDM is the mass of the high-resolution dark matter particle used in the hydrodynamical simulations. The softening is the value appropriate to the
high-resolution dark matter particles at redshift z = 0.

M200 (1012M� ) Nsub Mgal (1010M� ) mDM (104M� ) Softening (kpc)
DMO Hydro DMO Hydro

APOSTLE- 11 1.66 1.57 2027 1543 3.40 4.92 0.13
APOSTLE- 12 1.10 1.02 2158 1563 1.87 4.92 0.13
APOSTLE- 41 1.35 1.16 1579 1253 1.11 2.45 0.13
APOSTLE- 42 1.39 1.12 2650 1675 1.94 2.45 0.13
AURIGA- 6 1.05 1.01 1355 675 7.30 3.64 0.18
AURIGA- 16 1.49 1.50 2088 936 9.28 3.89 0.18
AURIGA- 21 1.51 1.42 2094 932 11.23 4.11 0.18
AURIGA- 23 1.61 1.50 1870 915 10.45 4.35 0.18
AURIGA- 24 1.50 1.47 1982 943 9.12 3.92 0.18
AURIGA- 27 1.76 1.70 2351 1021 10.99 4.03 0.18

Figure 1. Distribution of the ratios of the masses of haloes matched between
DMO and hydrodynamical versions of a simulation. The teal line shows the
distribution of mass ratios when no correction has been applied. The crimson
line shows the distribution of mass ratios after the masses of DMO haloes
have been multiplied by the median of the teal distribution (a value of 0.76).

positions of subhaloes at the snapshots as a function of time with
the condition that the result be twice continuously differentiable,
except at the ends, where the first derivative is equal to the linear
interpolant slope.

We show in Section 2.3.1 that this method is biased. Cubic
spline interpolation systematically underpredicts the orbital radii
of subhaloes at distances of less than 30 kpc from the centre of
the halo, precisely the region where reconstructing subhalo orbits is
most important for tests of the CDM model. Orbital radii are often
underpredicted by a factor of 2 or more, especially if pericentre
occurs at a time halfway between two snapshots.

Instead of interpolating, we track the positions and velocities
of subhaloes between snapshots by integrating their orbits in the
potential of the halo, which we assume to be static over this time
and, for simplicity, axisymmetric. We model the potential and
integrate the orbits using the publicly available codes GALPY and
PYNBODY (Pontzen et al. 2013; Bovy 2015). This method accurately
reproduces the orbits of subhaloes around the host halo, even in

situations where the cubic spline method is most prone to failure.
By integrating the orbits of subhaloes, we can accurately estimate
subhalo abundances at galactic distances of less than 10 kpc.

To predict the position of a subhalo accurately, choosing the
correct frame of reference is paramount. Following the prescription
of Lowing et al. (2011), we take the coordinate origin of the halo to
be the position of the particle with the minimum potential energy,
and the velocity of the parent halo (which is to be subtracted from
the velocity of the subhalo under consideration) to be the mean
velocity of all particles within 5 per cent of r200. We define this
reference frame for each snapshot. All calculations are performed
in physical coordinates.

We match subhaloes between snapshots using a merger tree. To
determine the position and velocity of a subhalo between snapshots
1 and 2, in the time interval t1 < t < t2, we take the following steps:

(i) Construct an intermediate ‘snapshot’ by summing the mass
distributions of snapshots 1 and 2, halving the mass of each particle.

(ii) Since the required GALPY routines are written for axisym-
metric potentials, we interpolate the mass distribution of the
intermediate snapshot on a two-dimensional R − z grid.2 We discard
particles that are further than 800 kpc from the centre of the halo. The
effect of this approximation on the calculated orbits is negligible.
The z-axis of the grid is taken to be the z-direction in simulation
coordinates, and so is unrelated to the plane of the galaxy. The
accuracy of the results in Fig. 2 shows that this arbitrary choice of
z-axis is unimportant as the mass distribution is close to spherical.

(iii) Taking the subhalo at snapshot 1 to be a point mass, integrate
its orbit forwards in time in the intermediate potential using the
standard GALPY fourth-order symplectic integrator.

(iv) Integrate the orbit of the subhalo at snapshot two backwards
in time in the intermediate potential.

(v) The orbit of the subhalo is found by taking a weighted sum
of the forward and backward orbits. The position, �x, of a subhalo at
a time t in the interval t1 < t < t2 is given by

�x(t) = �xf (t)
t2 − t

t2 − t1
+ �xb(t)

t − t1

t2 − t1
, (1)

where �xf and �xb are the positions of the subhaloes being integrated
forwards and backwards in time at time t, respectively.

2R is the two-dimensional cylindrical radius, and z is the vertical distance.
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Figure 2. The accuracy of orbit integration at predicting the orbital radii
of subhaloes at an intermediate snapshot. For reference, we compare this
method to the cubic spline described in Sawala et al. (2017) and also used
in Garrison-Kimmel et al. (2017). The lower panel shows the number of
subhaloes present in each radial bin.

(vi) The position and velocity of each subhalo is output every
3 Myr.

To assess the accuracy of the reconstruction of subhalo orbits,
we perform the following experiment. We select a pair of non-
consecutive snapshots from the AURIGA simulation (snapshots 99
and 101, corresponding to a redshift of z � 0.4). The time between
these snapshots is approximately the same as the time between
successive APOSTLE snapshots. Using our method, we calculate the
positions of all subhaloes at the time of snapshot 100, which we
can compare directly with the actual positions calculated at the
intermediate snapshot. The results of this test are shown in Fig. 2.
We can see that orbit integration accurately predicts the positions of
subhaloes between snapshots, and is therefore an effective tool for
studying the dynamics of substructure close to the centre of the halo.
The green points in Fig. 2 show the results of the same test when
applied to subhalo orbits calculated using the cubic spline method.
A detailed study of why the cubic spline method underpredicts the
orbital radii of subhaloes is given in the following subsection.

2.3.1 Comparison to cubic spline

To demonstrate the inaccuracies introduced by cubic spline interpo-
lation, we use the AQUARIUS simulations. The AQUARIUS project is
a set of DMO zoom-in simulations of 1012 M� dark matter haloes
(Springel et al. 2008). Specifically, we use the Aq-A4 simulation,
which has 258 snapshots between z = 0.5 and the present day,
and a high-resolution particle mass of 3.9 × 105 M�. This time
resolution is approximately sixteen times better than in the APOSTLE

simulations. We select a subset of snapshots with the same temporal
spacing as the snapshots in the APOSTLE simulations. We can
compare the orbits calculated using the cubic spline interpolation
on the subset of snapshots to the orbit measured in the additional
snapshots not used to fit the cubic splines. Fig. 3 demonstrates how
the cubic spline interpolation underestimates the orbital radius of a
subhalo near pericentre. This underestimation occurs at pericentre
as this is where the acceleration experienced by the subhalo is

Figure 3. The distance of a subhalo from the halo centre of potential over
several orbital periods in the Aquarius Aq-A4 simulation. Black circles show
the distance measured at each snapshot. Black squares show the distance
at snapshots used for orbit integration and fitting cubic splines. The pink
line shows the orbit calculated using the orbit integration method described
above. The green line shows the orbit inferred from the cubic spline method
introduced by Sawala et al. (2017).

Figure 4. A two-dimensional projection of a portion of the subhalo orbit
shown in Fig. 3. The orbit is close to planar in the z-coordinate. The portion
of the orbit is chosen from the middle of the whole orbit shown in Fig. 3
to prevent edge effects in the cubic spline interpolation. Black circles show
the position of the subhalo at each snapshot, and black squares show the
position of the subhalo at the snapshots used to calculate the pink (orbit
integration) and green (cubic spline) lines. Stars show the position of the
pericentre of the orbit. The black star is almost exactly on top of the pink
star.

varying most rapidly. The cubic spline, which assumes that the
acceleration of the subhalo is linear in time between snapshots,
is unable to account for the rapidly varying force acting on the
subhalo as its distance from the centre of the halo changes rapidly. In
Fig. 4, we show a two-dimensional projection of the orbit over seven
snapshots. The positions plotted for the cubic spline are calculated
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Subhalo destruction in APOSTLE and AURIGA 5785

Figure 5. Cumulative radial distribution of subhaloes, averaged over a
5 Gyr period, calculated using orbit integration (pink) and cubic spline
interpolation (green) on a subset of simulation snapshots. The black line
shows the radial distribution of subhaloes measured using all snapshots.
The bottom panel shows the ratio of the calculated and true number of
subhaloes inside a given radius.

at the exact time of the AQUARIUS snapshots, so any deviations are
due solely to the choice of interpolation.

In contrast, integrating the orbits of subhaloes consistently
reproduces the radius and time of pericentre passage with a high
degree of accuracy, as seen in Figs 3 and 4. The orbit of the subhalo
is determined by the shape of the potential and its current position
and velocity. Integrating the orbits ensures that the relevant physics
is included, leading to accurate predictions for the positions and
velocities of subhaloes between snapshots. On the other hand, the
cubic spline interpolation method has no physical basis, leading to
orbits which do not conserve angular momentum.

To quantify the error introduced by the cubic spline interpolation
on the calculation of the subhalo radial distribution, we calculate
the time-averaged cumulative radial distribution of subhaloes over a

5 Gyr period using the positions in the AQUARIUS snapshots and the
positions calculated using either the cubic spline interpolation or
our orbit integration method. Fig. 5 shows that the tendency of the
cubic spline to underestimate the orbital radius of a subhalo leads
to a large overprediction of the abundance of subhaloes at radii less
than 20 kpc (around 10 per cent of r200). At distances of less than
5 kpc from the halo centre, the cubic spline interpolation method
predicts a significant chance of observing substructure despite no
object having ever passed so close to the halo centre. By contrast,
the orbit integration method matches the actual radial distributions
perfectly.

3 A BU N DA N C E O F S U B S T RU C T U R E I N
H Y D RO DY NA M I C A L S I M U L AT I O N S

The central galaxies that form in the AURIGA simulations are
significantly more massive than those that form in the APOSTLE

simulations, even though they both have broadly similar halo
masses. We show in this section that the mass of the galaxy has a
marked effect on subhalo abundance, even at distances well beyond
the edge of the galaxy. In Fig. 6, we compare the radial distribution
of subhaloes in the APOSTLE, AURIGA, and DMO simulations. The
effect of the larger AURIGA galaxies is to reduce the abundance of
subhaloes at all radii. We find that the size of the reduction depends
strongly on radius but is broadly independent of mass for subhaloes
in the range of 106.5–108.5 M� in agreement with the conclusions
of Sawala et al. (2017).

The reduction in subhalo abundance as a function of radius
is shown explicitly in Fig. 7. Fundamental tests of the CDM
model, for example using stellar streams to search for substructure,
are sensitive to substructure within 20 kpc of the centre of the
halo (or equivalently ∼10 per cent of r200 for a Milky Way–
sized halo). At these radii, the presence of the galaxy reduces
the substructure abundance by 50 per cent in the APOSTLE and by
80 per cent in the AURIGA simulations relative to the DMO case.
The APOSTLE simulations predict over twice as many dark (i.e.
low-mass) substructures as the AURIGA simulations.

In Fig. 8, we show the cumulative subhalo mass functions in
four spherical shells in the DMO and hydrodynamical versions
of the APOSTLE and AURIGA simulations. Power-law fits to the

Figure 6. Linear density of subhaloes in hydrodynamical and DMO versions of the APOSTLE (blue) and AURIGA (orange) simulations as a function of radius.
The black line shows the median radial density of subhaloes in all DMO simulations. Each panel corresponds to a different subhalo mass bin as indicated. The
results are time averaged over a period of 5 Gyr.

MNRAS 492, 5780–5793 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/4/5780/5679897 by U
niversity of D

urham
 user on 25 August 2023



5786 J. Richings et al.

Figure 7. Ratio of the radial number density of subhaloes in hydrody-
namical and DMO versions of the APOSTLE (blue) and AURIGA (orange)
simulations, for subhaloes with masses in the range of 106.5–108.5 M�.
Thin lines show the reduction in subhalo abundance for individual haloes
and the thick lines the median of the thin lines.

differential mass functions have slopes between −1.8 and −1.9
in the two outermost shells, consistent with the findings of both
Springel et al. (2008) and Sawala et al. (2017). At distances less than
20 kpc from the halo centre (top panels), we find that the slopes of
the mass functions in the AURIGA hydrodynamical simulations are
significantly shallower than the corresponding slopes in APOSTLE,
suggesting that the implementation of baryonic physics in AURIGA

leads to a more pronounced reduction of small-mass relative to
high-mass haloes. This is simply because less massive haloes are
more prone to tidal disruption, rather than any systematic difference
between the orbital distributions of smaller and larger haloes. We fit
the median mass function in each radial bin with a power law using
a non-linear least squares method. In the innermost radial bin, the
slope in the AURIGA hydrodynamical simulations is −1.4, whereas
the slope in APOSTLE simulations is −1.7. Values for all power-law
fits are listed in Table 2.

3.1 Subhalo abundance far from the central galaxy

As the distance from the central galaxy increases, the reduction
in subhalo abundance caused by the inclusion of baryonic physics
should asymptote to a constant value, at a radius where the tidal field
of the central galaxy has no impact on the evolution of small haloes.
This is indeed what we see in Fig. 7 which shows that the ratio of
subhalo abundance in the hydrodynamical and DMO simulations
rises with distance from the centre of the halo, until it begins to
plateau at a radius of ∼300 kpc. The reason that the lines in Fig. 7
do not plateau at a value of 1 is because we computed the number
density of subhaloes in fixed mass bins, without correcting for the
effects described in Section 2.2. The radius at which the reduction
in subhalo abundance plateaus to a constant value is significantly
outside of r200, which has a typical value of 220 kpc for the haloes in
our sample. Thus, the impact of the central galaxy seems to extend
surprisingly far, well beyond the extent of the galactic discs. This
conclusion is based on two observations.

First, the velocity anisotropy of subhaloes is lower (implying
more circularly biased orbits) in the hydrodynamical simulations

compared to the DMO case. The difference in velocity anisotropy
only becomes negligible at around 300 kpc. Secondly, the number
of haloes that have been in and out of the main halo is larger in the
DMO than in the hydrodynamical simulations. To show this, we
count the number of haloes of mass (107–108) M� in a spherical
shell between 200 and 300 kpc. For each subhalo, we check if it
has previously been close to the central galaxy.3 We find that the
difference in the number of subhaloes between the hydrodynamical
and DMO simulations is strongly correlated with the difference
in the number of subhaloes that have been close to the centre of
the halo. In other words, at large radii there exists a population
of DMO subhaloes that have fallen into the halo, survived their
passage through the centre, and re-emerged. These are sometimes
called ‘splashback haloes’ (Gill, Knebe & Gibson 2005). Many
of their hydrodynamical counterparts do not survive the encounter
with the galaxy at the centre of the halo, and so we observe the
abundance ratio continuing to rise to distances of 300 kpc from the
centre of the halo, well beyond r200. The results of this calculation
for the level 4 suite of AURIGA simulations (see Section 2) are
shown in Fig. 9. Here, we compare results with and without the
mass correction described in Section 2.2. We see a clear correlation
in both cases; however, when the mass correction is applied, the
points fall roughly along the expected 1:1 line.

To explore this point further, we compare the evolution of a popu-
lation of subhaloes matched between the DMO and hydrodynamical
simulations. We match the subhaloes first by particle IDs, using the
matching criterion of Bose et al. (2017) and, secondly, by requiring
that the subhaloes should have the same mass and distance from the
centre of the main halo to within 10 per cent. These criteria are quite
restrictive, and effectively limits our sample to objects that have not
yet had an interaction with the main halo yet. Matched objects have
the same orbits at redshift z = 1, so we can confidently attribute
present-day differences between the matched objects to interactions
that occur during the time period we study. We track the masses
and positions of our matched sample between redshift z = 1 and
the present day, a period of roughly 8 Gyr, and compare matched
subhaloes that were between 200 and 300 kpc from the centre of
the halo at redshift z = 1. From this sample, we select objects that
ceased to exist before redshift z = 0 in the hydrodynamical version
but that survive to the present day in the DMO version. Subhaloes
that meet these criteria are approximately three times as common
as subhaloes that survive in the hydrodynamical simulation but are
destroyed in the DMO simulation.

We can also use our matched sample of subhaloes to assess
the role of mass stripping (rather than complete destruction) in
the reduction in subhalo abundance. The steepness of the subhalo
mass function means that it is possible to measure a reduction in
subhalo abundance in a particular mass bin, if subhaloes undergo
significant stripping without any destruction taking place at all.
We select a sample of matched subhaloes that lie between 200
and 300 kpc from the centre of the halo at z = 1, have a mass in
the DMO simulation in the range of 106.5–108.5 M�, and survive
to the present day. Although we do not specify it in advance, we
find that the dynamics of these matched objects, specifically their
average distance from the centre of the main halo as a function of
time, is identical in the hydrodynamical and DMO samples. Fig. 10

3We adopt a radius of 0.7 ×r200 as our definition of ‘close’. This is a
typical radius at which the tidal forces from the spherically averaged mass
distributions in the hydrodynamical simulations are equal to the tidal forces
in the DMO simulations.
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Subhalo destruction in APOSTLE and AURIGA 5787

Figure 8. Cumulative subhalo mass functions for subhaloes in the APOSTLE (blue) and AURIGA (orange) hydrodynamical simulations. Each panel represents
a different spherical shell. The thick black lines show the median cumulative subhalo mass function of all APOSTLE and AURIGA DMO subhaloes in each radial
bin.

Table 2. Power-law slopes for differential subhalo mass functions in the
mass range (106.5–108.5) M� in DMO and hydrodynamical simulations in
four spherical shells. The width of the spherical shell (top row) is given in
kpc.

0–10 10–20 20–50 50–200

Apostle DMO −1.74 −1.88 −1.90 −1.91
Auriga DMO −1.69 −1.77 −1.92 −1.93
Apostle Hydro −1.73 −1.86 −1.92 −1.93
Auriga Hydro −1.44 −1.64 −1.82 −1.94

shows the median reduction in subhalo mass as a function of time.
DMO subhaloes lose an average of 38 per cent of their mass, whilst
subhaloes in AURIGA lose an average of 49 per cent. Thus, a halo
in the hydrodynamical simulation with the same initial mass as
its DMO counterpart at redshift z = 1 will be, on average, about
20 per cent less massive today, even if it shares the same radial
distance history. This merely reflects the enhanced tidal stripping in
the latter case due to the presence of the massive central galaxy. We

can quantify the contribution of this effect to the overall reduction
in abundance as follows.

We assume a power-law mass function of the form,

dN

dM0
= kMα

0 , (2)

where M0 is the uncorrected mass. The mass of the subhalo after
stripping is given by M1 = βM0. Thus,

dN

dM1
= kβ−α−1Mα

1 , (3)

so the ratio of the mass functions is given by β−α − 1. Taking
values of α = −1.9 for the power-law slope of the subhalo mass
function (Springel et al. 2008) and β = 0.8 for the stripping
factor (the difference in stripping between the hydrodynamical
and DMO simulations) gives a value of 0.82 for the ratio of the
mass functions, corresponding to an 18 per cent reduction in the
number of objects. This stripping effect is the dominant cause for the
reduction in subhalo abundance for distances greater than 200 kpc
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Figure 9. Difference in the number of subhaloes with masses in the range
of 107–108 M� in a spherical shell of width 200–300 kpc in the DMO and
hydrodynamical simulations plotted against the difference in the number
of subhaloes in this shell that have previously been inside 70 per cent
of r200 (labelled by the subscript splash). Each point represents a halo
from the level 4 AURIGA suite of simulations. The blue points show the
haloes where we have not applied any correction to the masses of DMO
subhaloes. The orange points show the result when we correct the masses
of DMO subhaloes using the mass correction technique described in
Section 2.2.

Figure 10. Mass-loss of subhaloes between redshift, z = 1, and the present
day for a sample of subhaloes matched between DMO and hydrodynamical
versions of the AURIGA simulations. Subhaloes are selected at z = 1 to be
between 200 and 300 kpc from the centre of the main halo and to have a
mass in the range of 106.5–108.5 M�. Each line shows the median reduction
in mass as a function of time for subhaloes that survive to the present day.

from the centre of the halo. Stronger stripping in the hydrodynamical
simulations also explains why the orange points (i.e. with corrected
masses) in Fig. 9 lie slightly below the 1:1 line on average.

Finally, in Fig. 11 we show the reduction in subhalo abundance
in the hydrodynamical relative to the DMO versions of the AURIGA

simulations out to a radius of 800 kpc. Each line gives the median
reduction in subhalo abundance in a given mass bin for the six high-

Figure 11. The ratio of the radial number density of subhaloes in hydrody-
namical to DMO versions of the AURIGA simulations. Each line represents a
different mass bin as indicated in the legend. The results are time-averaged
over a period of 5 Gyr. The masses of subhaloes used in this figure are the
‘effective’ masses, calculated using the method described in Section 2.2.

resolution AURIGA haloes. In this case, we multiplied the masses
of DMO subhaloes by 0.75, following the method described in
Section 2.2. We see a clear change in gradient around 300 kpc
from the main halo. Inside this distance the reduction in abundance
decreases approximately linearly with radius. Even at distances of
400 kpc or greater from the halo, the ratio of number densities
has not yet reached unity. This is partly a result of the inability
of our mass correction to capture the full range of different growth
histories of subhaloes in the DMO and hydrodynamical simulations,
and partly a result of the same processes that destroy subhaloes near
the centre of the main halo being played out in smaller haloes that
later merge into the main one. For the AURIGA suite of simulations,
there are, on average, three galaxies with stellar mass greater than
108 M� between 400 and 800 kpc from the centre of the main halo,
as well as dozens of smaller galaxies. The presence of massive
galaxies (and their more disruptive tidal forces) at the centre of all
these haloes/subhaloes will also contribute in a small way to the
reduction in the abundance of substructure relative to the DMO
version of the simulations.

3.2 The SUBFIND algorithm

Halo substructure in the APOSTLE and AURIGA simulations is
identified using the SUBFIND algorithm (Springel et al. 2001).
The SUBFIND algorithm identifies subhaloes by selecting a list
of particles inside locally overdense regions, and then removing
particles from this list based on their binding energy. The mass of a
subhalo as calculated by the SUBFIND algorithm therefore depends
upon the local environment of the subhalo. Near the centre of a
large halo, the reported mass of a subhalo will be lower than if the
same set of particles were analysed at a greater distance from the
halo centre.

Here, we consider whether this radial-dependent property of
the SUBFIND algorithm will affect our comparison of substructure
properties in hydrodynamical and DMO simulations. In the sim-
ulations we study, DMO haloes and subhaloes tend to be around
25 per cent more massive than their hydrodynamical counterparts

MNRAS 492, 5780–5793 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/4/5780/5679897 by U
niversity of D

urham
 user on 25 August 2023



Subhalo destruction in APOSTLE and AURIGA 5789

Figure 12. The ratio of subhalo mass/Vmax to the field mass/Vmax of the
same set of particles, as calculated by the SUBFIND algorithm, as a function
of the local matter density. The field mass is defined as the mass reported by
the SUBFIND algorithm when the subhalo is placed far from the edge of the
parent halo. Solid lines show the reduction in subhalo mass, whilst dashed
lines show the reduction in Vmax.

(as discussed in Section 2.2). It is important to know whether this
systematic difference in mass, coupled with the radial bias of the
SUBFIND algorithm and the slight differences in resolution between
the APOSTLE and AURIGA simulations, could be a contributing factor
to the differences observed between the simulations.

To shed light on this issue, we perform the following test.
We create an idealized NFW halo using 5 × 107 particles, with
M200 =1012 M� and a concentration of c = 10, a typical value for
haloes of this mass.4 We then create a smaller NFW halo, with a
concentration of c = 20, whose particles have the same mass as
the particles in the larger NFW halo. We then implant the smaller
halo inside the larger, at various distances from the centre of the
larger halo. For each placement of the smaller halo, we run the
SUBFIND algorithm on the total set of particles. This procedure was
repeated for subhaloes with different numbers of particles. We take
the NFW distribution function to be a function of energy only, and
set the velocities of individual particles accordingly. We do not add
a bulk velocity to the test subhalo. We have checked and found the
difference in identified mass of stationary and fast moving subhaloes
is negligible compared to the size of the other effects discussed in
this section.

The results of this test are shown in Fig. 12. We see a clear trend
in the reduction of the calculated subhalo mass as the local density
increases (i.e. at smaller radii). An increase in the local density of
approximately three orders of magnitude leads to a reduction in the
reported SUBFIND mass by a factor of 10. The comparatively small
differences in local density between the simulations considered
means that the density dependence of the SUBFIND algorithm does
not contribute significantly to the results presented in this section.

4We create this halo using the publicly available code PYICS, described in
Herpich et al. (2017), which is in turn based on the algorithm introduced by
Kazantzidis, Magorrian & Moore (2004).

The size of this effect does not depend strongly on subhalo
mass, except for cases in the very centre of the halo where the
SUBFIND algorithm fails to even identify the existence of the
smallest halo tested. Since the effect of radius on reported mass
is approximately the same for subhaloes with masses spanning
two orders of magnitude, we do not expect that the behaviour
of the SUBFIND algorithm has a significant impact on the results
presented in this section, where the mass differences are much
smaller. Our one caveat applies to the least massive subhaloes
in our simulations. It is probable that our sample of subhaloes
is incomplete for radial distances of less than roughly 10 kpc.
Since the majority of substructure observed at small radii is only
observed due to the orbit integration method we employ, the effect
of the radial dependence of the SUBFIND algorithm on our results is
small.

We also quantify this radial effect on the quantity Vmax, the max-
imum value of a subhalo’s rotation curve. The radial dependence of
the calculated Vmax is much weaker than for the total subhalo mass.
This is because the value of Vmax depends on the innermost particles,
whereas the outermost particles in our idealized subhaloes are the
ones most likely to be identified as belonging to the host halo.

4 SU B H A L O V E L O C I T I E S

An accurate estimate of the expected velocity distribution of low-
mass substructures is a critical input into methods to search for
small-mass dark substructures from measured gaps in cold stellar
streams. In this section, we examine the velocity distributions in
our simulations; contrasting the two sets, we can gain some insight
into the size of the theoretical uncertainties in these distributions.
This topic has been explored already by, for example, Sawala et al.
(2017).

To obtain a robust estimate of the velocity distributions, we
employ kernel-density estimation (Rosenblatt 1956; Parzen 1962),
using a Gaussian kernel and applying Scott’s rule to estimate the
bandwidth (Scott 2015). The distribution of subhalo speeds as a
function of radius is shown in Fig. 13. The presence of the central
galaxy affects the distributions relative to the DMO case for both
hydrodynamical sets of simulations. The impact of the more massive
central galaxies in the AURIGA simulations is clear. The depth of
the potential well is larger, leading to a greater radial acceleration
as subhaloes fall inwards. This effect of the central galaxy is
also manifest in the APOSTLE simulations, but it is much weaker
reflecting the smaller masses of the central galaxies. We note that
no such effect was observed by Sawala et al. (2017), probably as
result of inaccuracies in their interpolation scheme.

We find that the distribution of subhalo speeds is generally well
fit by a Rician distribution, in agreement with Sawala et al. (2017).
The Rician distribution is a two-parameter model given by

f (x | ν, σ ) = x

σ 2
exp

(−(x2 + ν2)

2σ 2

)
I0

(xν

σ 2

)
, (4)

where I0 is the modified Bessel function of the first kind with order
zero. The ν parameter controls the location of the peak, with a value
of 0 giving a Maxwellian distribution. The σ parameter controls the
width of the distribution. The parameters of the fits are given in
Table 3.

The distributions of subhalo radial velocities in the same radial
bins used in Fig. 13 are shown in Fig. 14. Sawala et al. (2017)
found that close to the halo centre, the distribution of subhalo radial
velocities in the Apostle simulations was well described by a double
Gaussian. Fig. 4 shows how plunging orbits calculated using the

MNRAS 492, 5780–5793 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/4/5780/5679897 by U
niversity of D

urham
 user on 25 August 2023



5790 J. Richings et al.

Figure 13. Probability distributions of the speed (relative to the host halo) in spherical shells for subhaloes of mass in the range of 106.5–108.5 M� in the
APOSTLE (blue) and AURIGA (orange) simulations. Thick black lines show the median velocity distribution of all DMO subhaloes in each bin.

Table 3. Values of the parameters ν and σ obtained from fitting a Rician
distribution to the median values of the velocity distributions shown in
Fig. 13, in km s−1. Each column correspond to a different radial bin, with
the width of the shell in kiloparsecs.

0–10 10–20 20–50 50–200

Apostle DMO 351, 110 310, 101 242, 97 167, 78
Auriga DMO 384, 68 355, 66 285, 75 191, 71
Apostle Hydro 379, 75 326, 83 249, 81 165, 71
Auriga Hydro 554, 48 480, 43 356, 56 211, 63

cubic spline interpolation method pass closer to the centre of the
halo than the true orbits, with a velocity that is predominantly
tangential during most of the passage through the central region.
This is a general feature of orbits constructed using the cubic
spline interpolation method. Consequently, the dearth of low-radial
velocity orbits reported by Sawala et al. (2017) is an artefact of
their orbit reconstruction method. This explains why the velocity

distributions that we find in the top left-hand panel of Fig. 14 do
not show such a pronounced dip around vrad = 0. In the 50–200 kpc
radial bins, we see that one of the AURIGA systems has an unusually
bimodal velocity distribution. This distribution is the result of an
interaction with another halo between redshift z = 0.5 and the
present day. A population of subhaloes belonging to the passing
halo have flown in and out of the edge of the halo, resulting in a
peak of the negative radial velocity whilst infalling, and a peak in
the positive radial velocity distribution after pericentre.

We can see in Fig. 14 that the deeper gravitational potential in
the hydrodynamical simulations relative to the DMO case leads
to a broadening of the radial velocity distribution, with the effect
being most pronounced in the AURIGA simulations at small radii.
This effect is a combination of a greater radial acceleration and the
preferential disruption of objects on more circular orbits near the
centre of the halo. We also note that the distributions are remarkably
symmetrical, even in the outermost spherical shell. This shows that
the subhalo abundance at all radii reflects a balance between inflow
and outflow.
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Subhalo destruction in APOSTLE and AURIGA 5791

Figure 14. Probability distributions of radial velocities (relative to the host halo) in spherical shells for subhaloes with masses in the range (106.5–108.5) M�
in the APOSTLE (blue) and AURIGA (orange) simulations. Thick black lines show the median velocity distribution of all DMO subhaloes in each bin.

5 C O N C L U S I O N S

The large number of low-mass haloes predicted by N-body sim-
ulations to form in a �CDM universe provide a key test of the
paradigm. In practice, however, the clear-cut predictions from N-
body simulations are only part of the answer, as some of these small
haloes that fall into larger ones can be destroyed by tidal forces
whose strength depends on the contents of the halo, particularly the
galaxy at the centre. Thus, rigorous predictions for the abundance
of subhaloes requires modelling the baryonic processes that lead to
the formation of the galaxy. In this paper, we have investigated how
the abundance and velocity distribution of small-mass subhaloes
(∼106.5–108.5M�) within galaxy-size haloes is affected by baryon
processes, and we have compared two different implementations
of such processes using the independent APOSTLE and AURIGA

simulations.
Since subhaloes are quite rare near the centre of the host halo and

are poorly sampled in the limited number of available simulation
outputs to study their orbits we have integrated the orbits of
subhaloes between snapshots, using the publicly available code

GALPY. The results we present are obtained by averaging over a
look-back period of 5 Gyr.

We find that the abundance of substructures is significantly
affected by the way in which baryon processes are treated. At
10 per cent of r200 the abundance of low-mass substructures is
reduced relative the dark matter-only (DMO) simulations by around
50 per cent and 80 per cent in the APOSTLE and AURIGA simulations,
respectively. We also find differences in the slope of the subhalo
mass function and the width and peak location of the velocity
distributions, all of which can be explained by the different masses
of the galaxies that form at the centre of the haloes in the two
simulations. The more massive central galaxies in AURIGA result in
larger tidal forces, which cause enhanced destruction and stripping
of substructures. Perhaps surprisingly, we find that the abundance
of subhaloes in the hydrodynamical simulations is still lower than
in the DMO simulations even well beyond r200, particularly in
AURIGA. This happens because objects that spend the majority of
their orbit far from the central galaxy have highly radial orbits that
take them past r200; some of the objects that emerge unscathed
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from the DMO simulation are destroyed in the hydrodynamical
counterpart.

A deeper potential also causes subhaloes to accelerate more as
they move towards the centre of the halo, leading to an increase in
the width of the radial velocity distributions. We also find that the
peak of the distribution of subhalo speeds is shifted to significantly
higher values in the hydrodynamical simulations, with the largest
changes occurring near the centre of the AURIGA simulations.

Sawala et al. (2017) and Garrison-Kimmel et al. (2017) investi-
gated similar processes to those we have studied here, the former
using the same APOSTLE simulations that we too have analysed.
Our results differ significantly from theirs. We have shown that this
is because the cubic spline method they used to interpolate orbits
between snapshots is insufficiently accurate to follow the orbits
near the centre of the halo. Our orbit integration method predicts
less substructure at small distances from the halo centre. We also do
not observe the velocity biases described by Sawala et al. (2017).
However, we find that the conclusion of Sawala et al. (2017) that
objects on radial orbits are more likely to undergo disruption by the
central galaxy holds true.

Roughly speaking the APOSTLE and AURIGA simulations bracket
the range of theoretical uncertainty for the abundance and velocity
distribution of substructures near the centre of a galaxy like the
Milky Way. APOSTLE underpredicts the mass of the Milky Way
by factors of 2–3, whereas, on average, the AURIGA galaxies
overpredict it by factors of 1.5–2. The halo-to-halo variations in the
velocity distributions is smaller than the differences seen in our two
hydrodynamical simulations. This size of theoretical uncertainty is
eminently reducible by improved modelling of the baryonic physics
of galaxy formation.
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